Difference between revisions of "BesselK0"

From TORI
Jump to navigation Jump to search
 
m (Text replacement - "\$([^\$]+)\$" to "\\(\1\\)")
 
Line 1: Line 1:
[[File:Besselk0mapT900.png|right|400px|thumb|$u+\mathrm i v=\mathrm{BesselK0}(x+\mathrm i y)$]]
+
[[File:Besselk0mapT900.png|right|400px|thumb|\(u+\mathrm i v=\mathrm{BesselK0}(x+\mathrm i y)\)]]
[[File:Besselk0plotT400.png|right|300px|thumb|$y=\mathrm{BesselK0}(x)$ and two asymptotics]]
+
[[File:Besselk0plotT400.png|right|300px|thumb|\(y=\mathrm{BesselK0}(x)\) and two asymptotics]]
'''BesselK0''' or $K_0$ is holomorphic function, solution $f$ of equation
+
'''BesselK0''' or \(K_0\) is holomorphic function, solution \(f\) of equation
: $ \!\!\!\!\!\!\!\!\!\!\ (1) ~ ~ ~ \displaystyle
+
: \( \!\!\!\!\!\!\!\!\!\!\ (1) ~ ~ ~ \displaystyle
 
f''(z)+f(z)/z=f(z)
 
f''(z)+f(z)/z=f(z)
  +
\)
$
 
 
that has asymptotic
 
that has asymptotic
: $ \!\!\!\!\!\!\!\!\!\!\ (2) ~ ~ ~ \displaystyle
+
: \( \!\!\!\!\!\!\!\!\!\!\ (2) ~ ~ ~ \displaystyle
 
K_0(z) = \exp(-z)\sqrt{\frac{\pi}{2z}} ~ \Big( 1+ O(1/z)\Big)
 
K_0(z) = \exp(-z)\sqrt{\frac{\pi}{2z}} ~ \Big( 1+ O(1/z)\Big)
  +
\)
$
 
at large values of $\Re(z)$.
+
at large values of \(\Re(z)\).
The same equation (1) holds also for $f(z)=\mathrm{BesselY0}(\mathrm i z)$, where [[BesselY0]] is [[Neumann function]].
+
The same equation (1) holds also for \(f(z)=\mathrm{BesselY0}(\mathrm i z)\), where [[BesselY0]] is [[Neumann function]].
   
[[Complex map]] of $f=\mathrm{BesselK0}(x+\mathrm i y)$ is shown in upper figure with
+
[[Complex map]] of \(f=\mathrm{BesselK0}(x+\mathrm i y)\) is shown in upper figure with
lines $u\!=\!\Re(f)\!=\!\rm const$ and
+
lines \(u\!=\!\Re(f)\!=\!\rm const\) and
lines $v\!=\!\Im(f)\!=\!\rm const$
+
lines \(v\!=\!\Im(f)\!=\!\rm const\)
in the $x$,$y$ plane.
+
in the \(x\),\(y\) plane.
   
 
==Integral representation==
 
==Integral representation==
: $ \!\!\!\!\!\!\!\!\!\!\ (o) ~ ~ ~ \displaystyle
+
: \( \!\!\!\!\!\!\!\!\!\!\ (o) ~ ~ ~ \displaystyle
 
K_0(z) = \int_0^\infty \exp\!\Big(
 
K_0(z) = \int_0^\infty \exp\!\Big(
 
-z \cosh(t)
 
-z \cosh(t)
 
\Big) ~ \mathrm d t
 
\Big) ~ \mathrm d t
  +
\)
$
 
   
 
==Relation to other [[cylindric function]]s==
 
==Relation to other [[cylindric function]]s==
: $ \!\!\!\!\!\!\!\!\!\!\ (o) ~ ~ ~ \displaystyle
+
: \( \!\!\!\!\!\!\!\!\!\!\ (o) ~ ~ ~ \displaystyle
 
K_0(z)=\frac{\mathrm i \pi}{2} H_0(\mathrm i z)
 
K_0(z)=\frac{\mathrm i \pi}{2} H_0(\mathrm i z)
  +
\)
$
 
where $H_0$ is the [[Hankel function]] of zero order, id est, [[BeesselH0]].
+
where \(H_0\) is the [[Hankel function]] of zero order, id est, [[BeesselH0]].
   
 
==Behavior along the real axis==
 
==Behavior along the real axis==
Esplicit plot of BesselK0 is shown in figure at right, $y=\mathrm{BesselK0}(x)=K_0(x)$.
+
Esplicit plot of BesselK0 is shown in figure at right, \(y=\mathrm{BesselK0}(x)=K_0(x)\).
 
For comparison, the two asymptotics are shown,
 
For comparison, the two asymptotics are shown,
: $ \!\!\!\!\!\!\!\!\!\!\ (\mathrm A1) ~ ~ ~ \displaystyle y= \exp(-z)\sqrt{\frac{\pi}{2z}} ~ ~ ~ $ and
+
: \( \!\!\!\!\!\!\!\!\!\!\ (\mathrm A1) ~ ~ ~ \displaystyle y= \exp(-z)\sqrt{\frac{\pi}{2z}} ~ ~ ~ \) and
: $ \!\!\!\!\!\!\!\!\!\!\ (\mathrm A2) ~ ~ ~ \displaystyle y= \ln \frac{\pi}{2 x} - \mathrm{EulerGamma} ~ ~ ~ $
+
: \( \!\!\!\!\!\!\!\!\!\!\ (\mathrm A2) ~ ~ ~ \displaystyle y= \ln \frac{\pi}{2 x} - \mathrm{EulerGamma} ~ ~ ~ \)
 
Here [[EulerGamma]] is the Euler constant,
 
Here [[EulerGamma]] is the Euler constant,
: $ \!\!\!\!\!\!\!\!\!\!\ (4) ~ ~ ~ \displaystyle
+
: \( \!\!\!\!\!\!\!\!\!\!\ (4) ~ ~ ~ \displaystyle
 
\mathrm{EulerGamma}=\lim_{n \rightarrow \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \ln(n) \right) \approx
 
\mathrm{EulerGamma}=\lim_{n \rightarrow \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \ln(n) \right) \approx
 
0.577215664901532861
 
0.577215664901532861
  +
\)
$
 
 
The first of them approximates the function at large values of the argument, and the second does for the small values of the argument.
 
The first of them approximates the function at large values of the argument, and the second does for the small values of the argument.
   
Line 45: Line 45:
   
 
At small values of the argument, BesselK0 expands as follows:
 
At small values of the argument, BesselK0 expands as follows:
: $ \!\!\!\!\!\!\!\!\!\!\ (5) ~ ~ ~ \displaystyle
+
: \( \!\!\!\!\!\!\!\!\!\!\ (5) ~ ~ ~ \displaystyle
 
K_0(z) = \ln(2/z) - \mathrm{EulerGamma}
 
K_0(z) = \ln(2/z) - \mathrm{EulerGamma}
 
+
 
+
 
\frac{1}{4}\left( \ln(2/z) + 1 - \mathrm{EulerGamma} \right)~ z^2 + ...
 
\frac{1}{4}\left( \ln(2/z) + 1 - \mathrm{EulerGamma} \right)~ z^2 + ...
 
\frac{1}{128}\left( \ln(2/z) + 3 - 2\mathrm{EulerGamma} \right)~ z^4 + ...
 
\frac{1}{128}\left( \ln(2/z) + 3 - 2\mathrm{EulerGamma} \right)~ z^4 + ...
  +
\)
$
 
   
 
At large values of the argument BesselK0 expands as follows:
 
At large values of the argument BesselK0 expands as follows:
: $ \!\!\!\!\!\!\!\!\!\!\ (6) ~ ~ ~ \displaystyle
+
: \( \!\!\!\!\!\!\!\!\!\!\ (6) ~ ~ ~ \displaystyle
 
K_0(z) = \exp(-z) \sqrt{\frac{\pi}{2z}} \left(
 
K_0(z) = \exp(-z) \sqrt{\frac{\pi}{2z}} \left(
 
1-\frac{1}{8z}
 
1-\frac{1}{8z}
 
+\frac{9}{128 z^2}
 
+\frac{9}{128 z^2}
-\frac{75}{1024 z^3}+ .. \right)$
+
-\frac{75}{1024 z^3}+ .. \right)\)
 
The [[Mathematica]] easy calculates some tens of terms in the expansions above.
 
The [[Mathematica]] easy calculates some tens of terms in the expansions above.
 
The leading terms of these expansions are shown in the explicit plot at right.
 
The leading terms of these expansions are shown in the explicit plot at right.

Latest revision as of 18:26, 30 July 2019

\(u+\mathrm i v=\mathrm{BesselK0}(x+\mathrm i y)\)
\(y=\mathrm{BesselK0}(x)\) and two asymptotics

BesselK0 or \(K_0\) is holomorphic function, solution \(f\) of equation

\( \!\!\!\!\!\!\!\!\!\!\ (1) ~ ~ ~ \displaystyle f''(z)+f(z)/z=f(z) \)

that has asymptotic

\( \!\!\!\!\!\!\!\!\!\!\ (2) ~ ~ ~ \displaystyle K_0(z) = \exp(-z)\sqrt{\frac{\pi}{2z}} ~ \Big( 1+ O(1/z)\Big) \)

at large values of \(\Re(z)\). The same equation (1) holds also for \(f(z)=\mathrm{BesselY0}(\mathrm i z)\), where BesselY0 is Neumann function.

Complex map of \(f=\mathrm{BesselK0}(x+\mathrm i y)\) is shown in upper figure with lines \(u\!=\!\Re(f)\!=\!\rm const\) and lines \(v\!=\!\Im(f)\!=\!\rm const\) in the \(x\),\(y\) plane.

Integral representation

\( \!\!\!\!\!\!\!\!\!\!\ (o) ~ ~ ~ \displaystyle K_0(z) = \int_0^\infty \exp\!\Big( -z \cosh(t) \Big) ~ \mathrm d t \)

Relation to other cylindric functions

\( \!\!\!\!\!\!\!\!\!\!\ (o) ~ ~ ~ \displaystyle K_0(z)=\frac{\mathrm i \pi}{2} H_0(\mathrm i z) \)

where \(H_0\) is the Hankel function of zero order, id est, BeesselH0.

Behavior along the real axis

Esplicit plot of BesselK0 is shown in figure at right, \(y=\mathrm{BesselK0}(x)=K_0(x)\). For comparison, the two asymptotics are shown,

\( \!\!\!\!\!\!\!\!\!\!\ (\mathrm A1) ~ ~ ~ \displaystyle y= \exp(-z)\sqrt{\frac{\pi}{2z}} ~ ~ ~ \) and
\( \!\!\!\!\!\!\!\!\!\!\ (\mathrm A2) ~ ~ ~ \displaystyle y= \ln \frac{\pi}{2 x} - \mathrm{EulerGamma} ~ ~ ~ \)

Here EulerGamma is the Euler constant,

\( \!\!\!\!\!\!\!\!\!\!\ (4) ~ ~ ~ \displaystyle \mathrm{EulerGamma}=\lim_{n \rightarrow \infty} \left( \sum_{k=1}^{n} \frac{1}{k} - \ln(n) \right) \approx 0.577215664901532861 \)

The first of them approximates the function at large values of the argument, and the second does for the small values of the argument.

Expansions

At small values of the argument, BesselK0 expands as follows:

\( \!\!\!\!\!\!\!\!\!\!\ (5) ~ ~ ~ \displaystyle K_0(z) = \ln(2/z) - \mathrm{EulerGamma} + \frac{1}{4}\left( \ln(2/z) + 1 - \mathrm{EulerGamma} \right)~ z^2 + ... \frac{1}{128}\left( \ln(2/z) + 3 - 2\mathrm{EulerGamma} \right)~ z^4 + ... \)

At large values of the argument BesselK0 expands as follows:

\( \!\!\!\!\!\!\!\!\!\!\ (6) ~ ~ ~ \displaystyle K_0(z) = \exp(-z) \sqrt{\frac{\pi}{2z}} \left( 1-\frac{1}{8z} +\frac{9}{128 z^2} -\frac{75}{1024 z^3}+ .. \right)\)

The Mathematica easy calculates some tens of terms in the expansions above. The leading terms of these expansions are shown in the explicit plot at right. These expansions are used in the numerical implementation.

References

http://mathworld.wolfram.com/BesselFunctionoftheSecondKind.html

http://mathworld.wolfram.com/Euler-MascheroniConstant.html