Difference between revisions of "Linear fuction"
Line 17: | Line 17: | ||
==Iterates== |
==Iterates== |
||
− | [[Iterate]] of the linear function |
+ | [[Iterate]] of the linear function can be expressed through |
the superfunction and the Abel function in the standard way, |
the superfunction and the Abel function in the standard way, |
||
$(4) ~ ~ ~ \displaystyle T^n(z)=F(n+G(z))$ |
$(4) ~ ~ ~ \displaystyle T^n(z)=F(n+G(z))$ |
||
+ | |||
+ | Substitution of the Superfunction $F$ by (2) and the Abel function $G$ by (3) into equation (4) gives aslo linear function |
||
+ | |||
+ | $(5) ~ ~ ~ \displaystyle T^n(z)= |
||
+ | \frac{-A+B^n\Big( A+(-1+B) s\Big)}{-1+B}$ |
||
+ | |||
+ | with new parameters $A \frac {N^n-1}{B-1}$ instead of $A$ in (1) and |
||
+ | $B^n$ instead of $B$. |
||
==References== |
==References== |
Revision as of 13:43, 6 September 2013
Linear function is function that can be represented in form
$(1) ~ ~ ~ T(z)=A+B z$
where $A$ and $B$ are constants.
Abelfunction and Superfunction
Superfunction $F$ for the linear function $T$ by (1) can be written as follows:
$(2) ~ ~ ~ \displaystyle F(z)= A \frac{1-B^z}{1-B}$
The corresponding Abel function can be expressed as follows:
$(3) ~ ~ ~ \displaystyle G(z)= \log_B\Big(1+\frac{B-1}{A}z \big)$
Iterates
Iterate of the linear function can be expressed through the superfunction and the Abel function in the standard way,
$(4) ~ ~ ~ \displaystyle T^n(z)=F(n+G(z))$
Substitution of the Superfunction $F$ by (2) and the Abel function $G$ by (3) into equation (4) gives aslo linear function
$(5) ~ ~ ~ \displaystyle T^n(z)= \frac{-A+B^n\Big( A+(-1+B) s\Big)}{-1+B}$
with new parameters $A \frac {N^n-1}{B-1}$ instead of $A$ in (1) and
$B^n$ instead of $B$.
References
Keywords
Abel function Holomorphic function, Iterate of function Superfunction