Difference between revisions of "Fit1.cin"
Jump to navigation
Jump to search
Line 55: | Line 55: | ||
return fit1(d,z);} |
return fit1(d,z);} |
||
− | // Approximation of $\ |
+ | // Approximation of $\mathrm{tet}_b(z)$ can be extracted as FIT1(log(b),z) |
[[Category:C++]] |
[[Category:C++]] |
||
[[Category:Tetration]] |
[[Category:Tetration]] |
||
[[Category:Fit]] |
[[Category:Fit]] |
||
+ | [[Category:Book]] |
||
+ | [[Category:Michael Moldenhauer]] |
Revision as of 07:00, 1 December 2018
// Fit1.cin is routine that approximate tetration to base $b=\exp(a)$ for $0.05<a<2$ ; $\mathrm{tet}_b(z)$ is approximated for $|z|<1$ using the fruncated Taylor expansion of
// $\mathrm{tet}_b(z) - \ln(z+2)$
// keeping cubic terms. This is provides accuracy sufficient to make the camera–ready plots of tetration for moderate values of the imaginary part of the argument; in particular, it can be used for real values of the argument.
z_type old0(z_type d){ z_type q=sqrt(d); return -1.0018 +(0.15128484821526975*(1.+33.04715298851381*q-3.51771875598067*d)*q)/ (1.+3.2255053261256337*q) + (-0.5 + log(2.))/d;}
z_type old1(z_type d){ z_type q=sqrt(d); return 1.1 - 2.608785958462561*(1. - 0.6663562294911147*sqrt(d))* sqrt(d) - (-0.625 + log(2.) )/d ;}
z_type old2(z_type d){ z_type q=sqrt(d); return -0.96 + 3.0912038297987596*(1.+0.6021398048785328*d)*q/(1. + 4.240467556480155*d) + (-0.6666666666666666 + log(2.))/d;}
z_type old3(z_type d){ z_type q=sqrt(d); return 1.2 - 10.44604984418533* (1.+0.2137568928431227*q+0.3693275254470449*d)*q/ (1.+4.95715636660691*q + 7.70233216637738*d) - ( - 131./192. + log(2.))/d ;}
z_type new0(z_type d){ z_type q=sqrt(d); return q*(0.137467 + q*(4.94969 + q*0.0474179))/( 1. + q*(3.23171 + q*0.471222)) + (-(1./2.)+log(2.))/d -1.;}
z_type new1(z_type d){ z_type q=sqrt(d); return q*(-0.424278 +q*(1.75166 +q*(-1.46524 + q*0.93347)))/ ( 0.0312142+q*(-0.267478 + q)) + (-(5./8.) + log(2.))/d -1. ;}
z_type new2(z_type d){ z_type q=sqrt(d); return q*(3.39255 + q*(16.1046 +q*(-19.5216 + q*10.7458)))/ ( 1. + q*(4.1274 + q*5.25449)) + (-(2./3.) + log(2.))/d -1.;}
z_type new3(z_type d){ z_type q=sqrt(d); return // This is not misprint, there is d, not q. 0.16*q*(1. + q*(27.7934 + q*(358.688 +q*(-259.233 + d*61.6566))))/ (1. - 8.1192*q + 37.087*d) + (-131./192. + log(2))/d -1. ;}
z_type git(z_type d, z_type x) { if(Re(d)>log(2.)) return new0(d)+x*(new1(d)+x*(new2(d)+x*new3(d))); return old0(d)+x*(old1(d)+x*(old2(d)+x*old3(d))); }
z_type fit1(z_type d, z_type x) { DB L=log(2.); if(Re(d)<.001) { if(Re(x)>-1) return 1.; if(Re(x)<-1) return -990.; } return (x+1.)*(git(d,x)*x+1.)+ log(x+2.)/d - log(2.)/d*(1.+x);}
z_type FIT1(z_type d,z_type z){ if(Re(d)<.03) { if(Re(z)<-1.) return (-30.); return 1.;} if(Re(z)<-.5)return log(FIT1(d,z+1.))/d; if(Re(z)>.5) return exp(d*FIT1(d,z-1.)); return fit1(d,z);}
// Approximation of $\mathrm{tet}_b(z)$ can be extracted as FIT1(log(b),z)