Difference between revisions of "Noeter Theorem"

From TORI
Jump to navigation Jump to search
 
Line 1: Line 1:
  +
#redirect[[Noeter Theorem]]
'''Noeter Theorem''' defines the conservation laws, that corresponds to the continuous symmetries of the [[action]]. In this article, the most of subscripts are omitted, assuming that the colleagues can recover them by themselves.
 
 
==Background==
 
The physical system is assumed to be determined through its [[Lagrangian]], which is function of coordinates $x$, field $u$, and its derivative $u_\bullet$:
 
: $(1) ~ ~ ~ ~ ~ ~ ~ \mathcal L =\mathcal L(x,u,u_\bullet)$
 
Field and its derivatives are functions of coordinates;
 
$u=u(x)$ and
 
$u_\bullet=u_\bullet(x)$.
 
 
In general, $x$ may be a vector in some $N$dimensional space; and the field $u$ may also have several components, for example, $M$ components; $u_\bullet$ is assumed to be a matrix with the corresponding number of raws and columns, id set, $M \times N$ matrix.
 
 
Action is expressed as integral of Lagrangian:
 
: $(2) ~ ~ ~ ~ ~ ~ ~ A=\int \mathcal L \mathrm{d} x $
 
It is supposed that field $u$ realizes the [[stationary action]], that leads to the [[Lagrange-Euler equation]]
 
: $\displaystyle ~ ~ ~ ~ ~ ~ ~
 
\frac{\partial L}{\partial u} =
 
\left(\frac{\partial L}{\partial u_\bullet}\right)_\bullet$
 
 
Assume, the transformation of the coordinates $x$ and filed $u$
 
is parametrized with parameter $\varepsilon$ in such a way that the transformed coordinates $y$ are related to the initial coordinates $x$ with as follows:
 
: $(3) ~ ~ ~ ~ ~ ~ ~ y=x+\delta x(x)=x+\mathcal{X}(x) \varepsilon + \mathcal O(\varepsilon)^2$
 
The new field should be expressed through the initial field with relation
 
: $(4) ~ ~ ~ ~ ~ ~ ~ v=u+\delta u(x)=u+\Psi(x) \varepsilon + \mathcal O(\varepsilon)^2$
 
and its derivative
 
: $(5) ~ ~ ~ ~ ~ ~ ~ v_\bullet=u_\bullet+\delta u_\bullet (x)$
 
where $\varepsilon$ is parameter of transformation, and $\varepsilon$ is assumed to be small.
 
 
The invariance of action with respect to transform (3)-(5) means that
 
: $(8)\displaystyle ~ ~ ~ ~ ~ ~ ~ \int_{\Omega_\varepsilon} \mathcal L(y,v(y), v_\bullet(y)) ~\mathrm{d}^N(y)= \int_{\Omega} \mathcal L(x,u(x), u_\bullet(x)) ~\mathrm{d}^N(x)$
 
it is assumed that the $\Omega_\varepsilon$ is transform of $\Omega$.
 
 
==Statement of the Theorem==
 
The invariance (8) leads to the conservation of the Noeterian current
 
: $(9)\displaystyle ~ ~ ~ ~ ~ ~ ~ \Theta= \Theta(x,u,u_\bullet)= - \mathcal L \mathcal X
 
- \frac{ \partial \mathcal L}{\partial u_\bullet} \Psi
 
+ \frac{ \partial \mathcal L}{\partial u} u_\bullet \mathcal X$
 
 
In such a way, $\Theta$ is vector of length $N$. The law of conservation has the form
 
: $(10) ~ ~ ~ ~ ~ ~ ~ \Theta_\bullet = 0$
 
where the summation with respect to repeating subscripts is assumed.
 
 
==Proof of the Noeter theorem==
 
 
Using the infinitesimal generators
 
$\chi = \varepsilon \mathcal{X}(x)$ and
 
$\psi = \varepsilon \Psi(x)$, in the first order with respect to $\varepsilon$ , the transform of the coordinates and the field can be expressed as follows:
 
 
: $(11) \displaystyle ~ ~ ~ ~ ~ ~ ~ y=x+\chi~; ~ ~ x=y-\chi$
 
 
: $(12) \displaystyle ~ ~ ~ ~ ~ ~ ~ v(y)=u(x)+\psi = u(y\!-\!\chi) + \psi$
 
: $(13) \displaystyle ~ ~ ~ ~ ~ ~ ~ v_\bullet(y)=
 
\frac{\partial V(y)}{\partial y}=
 
u_\bullet(y-\chi)(I-\chi_\bullet)+\psi_\bullet=
 
u_\bullet(x)-u_\bullet \chi + \psi_\bullet
 
$
 
 
where $I$ is diagonal identity operator.
 
Then variation $\delta A$ of action $A$ can be expressed as follows:
 
 
: $(21) \displaystyle ~ ~ ~ ~ ~ ~ ~
 
\delta A =
 
\int \mathcal{L}(y,v(y),v_\bullet(y)) \mathrm{d}^N y -
 
\int \mathcal{L}(x,u(x),u_\bullet(x)) \mathrm{d}^N x=$
 
 
: $ \displaystyle ~ ~ ~ ~ ~ ~ ~ ~ ~ =
 
\int \mathcal{L}(y,v(y),v_\bullet(y)) (I+\chi_\bullet)\mathrm{d}^N x-
 
\int \mathcal{L}(x,u(x),u_\bullet(x) \mathrm{d}^N x=$
 
 
: $ ~ ~ \displaystyle ~ ~ ~ ~ ~ ~ ~ ~ ~ =
 
\int \Big(
 
\mathcal{L} \chi_\bullet+
 
\mathcal{L}\!\big(x\!+\!\chi,v(y),v_\bullet(y)\big)
 
-
 
\mathcal{L}(x,u(x),u_\bullet(x)\big) \Big) \mathrm{d}^N x$
 
 
: $ ~ ~ \displaystyle ~ ~ ~ ~ ~ ~ ~ ~ ~ = \int \Big(
 
\mathcal{L} \chi_\bullet+
 
\mathcal{L}\!\big(x\!+\!\chi,u(x)+\psi, u_\bullet(x)-u_\bullet \chi +\psi_\bullet \big)
 
- \mathcal{L}(x,u(x),u_\bullet(x)\big) \Big) \mathrm{d}^N x=$
 
 
: $ ~ ~\displaystyle ~ ~ ~ ~ ~ ~ ~ ~ ~ =
 
\int \Big(
 
\mathcal{L} \chi_\bullet
 
+ \mathcal{L}_x \chi
 
+ \mathcal{L}_u u_\bullet \chi
 
+ \mathcal{L}_{u_\bullet} u_{\bullet\bullet} \chi$
 
 
: $ \phantom{(21 12345678901)}~ ~ \displaystyle ~ ~ ~ ~ ~ ~ ~ ~ ~
 
- \mathcal{L}_u u_\bullet \chi
 
- \mathcal{L}_{u_\bullet} u_{\bullet\bullet} \chi
 
+\mathcal L _u \psi
 
+\mathcal L _{u_\bullet} \psi_\bullet -\mathcal L_{u_\bullet} \chi \Big) \mathrm{d}^N x$
 
 
The first line of the integrand in the last expression already can be combined into the divergence, giving
 
 
: $ (22) \displaystyle ~ ~ ~ ~ ~ ~ ~ ~ ~ \delta A=
 
\int \Big(
 
(\mathcal L \chi)_\bullet+
 
\mathcal L_u \cdot (\psi - u_\bullet \chi) +
 
\mathcal L_{u_\bullet} \cdot (-u_{\bullet\bullet} \chi) + \mathcal L_u \psi_\bullet -\mathcal L_{u_\bullet} u_\bullet \chi
 
\Big) \mathrm{d}^N x$
 
 
or, in slightly different form,
 
 
: $ (23) \displaystyle ~ ~ ~ ~ ~ ~ ~ ~ ~ \delta A=
 
\int \Big(
 
(\mathcal L \chi)_\bullet+
 
\mathcal L_u \cdot (\psi - u_\bullet \chi) +
 
\mathcal L_{u_\bullet} \cdot \big( \psi -u_{\bullet} \chi \big )_\bullet
 
\Big) \mathrm{d}^N x$
 
 
Using the equation of Lagrange-Euler, $\mathcal L_u$ can be replaced to $\big(\mathcal L_{u_\bullet})_\bullet$ ;
 
this gives
 
 
: $ (24) \displaystyle ~ ~ ~ ~ ~ ~ ~ ~ ~ \delta A=
 
\int \Big(
 
(\mathcal L \chi)_\bullet+
 
\big(\mathcal L_{u_\bullet})_\bullet\cdot (\psi - u_\bullet \chi) +
 
\mathcal L_{u_\bullet} \cdot \big( \psi -u_{\bullet} \chi \big)_\bullet\Big) \mathrm{d}^N x$
 
 
and the integrand can be represented as the divergence:
 
 
: $ (25) \displaystyle ~ ~ ~ ~ ~ ~ ~ ~ ~ \delta A=
 
\int \Big(
 
\mathcal L \chi +
 
\mathcal L_{u_\bullet} \cdot \big( \psi -u_{\bullet} \chi \big)\Big )_\bullet ~ \mathrm{d}^N x$
 
 
The integrand is the conservating current, corresponding to the symmetry of the action declared at the beginning.
 
(End of proof)
 
 
The indices in (25) are traced in the special article [[Proof:Noeter theorem]]; with subscripts, the law of conservation
 
can be written a follows:
 
: $ (26) ~ ~ ~ ~ ~ ~ \Big(
 
\mathcal L \mathcal X_k +
 
( \Psi_{\alpha} -u_{\alpha,j} \mathcal X_j ) \mathcal L_{u_{\alpha,k}} \Big) _{,k} =0$
 
 
==Use of the Theorem==
 
The integration of the current $\Theta$ with respect to spatial coordinates leads to the scalar quantity, that determines the time derivative. Let the time coordinate has number zero. Then, at the integration over a domain where the field vanish at the boundary, the integral of the 0th component of the current conserves:
 
: $(11) \displaystyle ~ ~ ~ ~ ~ ~ ~ \int_\Omega \Theta_{0} \mathrm d^{N-1} x=\mathrm {constant}$
 
 
 
For the case of conservation of electric charge, the Noeterian current has the same sense as the usual electric current. Often, there are a lot of transforms, that preserve the action. Each of them, by the Theorem above, gives the law of conservation. In particular, the translational symmetry of the space-time allows the four-parametric group of transform; each parameter gives the law of conservation; together they form the tensor of energy–momentum. The spatial integral of the zeroth components gives the vector of energy–momentum.
 
Conservation of Energy-momentum is one of the most fundamental principles of physics. Intents to negate this principle are described in the article [[Gravitsapa]]. Huge budget is spent for the development of the "propulsors without expulsion of the workint nedium" (движители без выброса рабочего тела); the Noeter theorem indicates that such activity is [[fraud]].
 
 
==References==
 
 
http://en.wikipedia.org/wiki/Noether's_theorem
 
 
[[Category:Conservation laws]]
 
[[Category:Articles in English]]
 

Latest revision as of 07:03, 1 December 2018

Redirect to: