Difference between revisions of "File:Tetma.jpg"

From TORI
Jump to navigation Jump to search
(Importing image file)
 
 
Line 1: Line 1:
  +
[[Complex map]] of the [[natural tetration]] without labels.
Importing image file
 
  +
  +
This image is loaded to the ingrampublishing.com
  +
  +
In order to use it in the book [[Суперфункции]],
  +
  +
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
  +
  +
\url{http://mizugadro.mydns.jp/BOOK/201.pdf}
  +
  +
The low resolution draft also had been loaded at the site of ingrampublishing
  +
  +
  +
==[[C++]] generator==
  +
  +
Files
  +
[[ado.cin]]
  +
[[conto.cin]]
  +
[[fsexp.cin]]
  +
[[fslog.cin]]
  +
should be loaded in order to compile the code below
  +
  +
<poem><nomathjax><nowiki>
  +
#include <math.h>
  +
#include <stdio.h>
  +
#include <stdlib.h>
  +
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
//using namespace std;
  +
#include<complex>
  +
typedef std::complex<double> z_type;
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define I z_type(0.,1.)
  +
#include "conto.cin"
  +
#include "fsexp.cin"
  +
//#include "fslog.cin"
  +
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
  +
int M=801,M1=M+1;
  +
int N=401,N1=N+1;
  +
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
  +
char v[M1*N1]; // v is working array
  +
//FILE *o;o=fopen("b271t0.eps","w"); ado(o,87,87);
  +
FILE *o;o=fopen("tetma.eps","w"); ado(o,1604,804);
  +
fprintf(o,"802 402 translate\n 100 100 scale\n");
  +
DO(m,M1) X[m]=-8.+.02*(m-.5);
  +
DO(n,N1) Y[n]=-4.+.02*(n-.5);
  +
for(m=-8;m<17;m++) {M(m,-4)L(m,4)}
  +
for(n=-4;n<5;n++) {M( -8,n)L(8,n)} fprintf(o,"2 setlinecap .006 W 0 0 0 RGB S\n");
  +
//fprintf(o,"/adobe-Roman findfont .6 scalefont setfont\n");
  +
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
  +
f[m*N1+n]=9999;}
  +
//DB b=sqrt(2);
  +
DO(m,M1){x=X[m]; printf("x=%6.3f\n",x);
  +
DO(n,N1){y=Y[n]; z=z_type(x,y); if(abs(z+2.)>.04)
  +
{ c=FSEXP(z);
  +
// c=FSLOG(z);
  +
p=Re(c); q=Im(c);
  +
if(p>-9999 && p<9999 && fabs(q)>1.e-12) g[m*N1+n]=p;
  +
if(q>-9999 && q<9999 && fabs(q)>1.e-12) f[m*N1+n]=q;
  +
}
  +
}}
  +
fprintf(o,"1 setlinejoin 2 setlinecap\n");
  +
p=2.; q=1.1;;
  +
//#include "plofu.cin"
  +
p=2;q=1;
  +
for(m=-19;m<19;m++)for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q);
  +
fprintf(o,".02 W 0 1 0 RGB S\n");
  +
for(m=0;m<29;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);
  +
fprintf(o,".01 W 1 0 0 RGB S\n");
  +
for(m=0;m<29;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);
  +
fprintf(o,".01 W 0 0 1 RGB S\n");
  +
  +
for(m= 1;m<20;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".03 W 1 0 0 RGB S\n");
  +
for(m= 1;m<20;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".03 W 0 0 1 RGB S\n");
  +
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".03 W .8 0 .8 RGB S\n");
  +
for(m=-31;m<32;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".03 W 0 0 0 RGB S\n");
  +
  +
fprintf(o,"0 setlinejoin 0 setlinecap\n");
  +
fprintf(o,"showpage\n");
  +
fprintf(o,"%cTrailer\n",'%');
  +
fclose(o);
  +
system("epstopdf tetma.eps");
  +
system( "open tetma.pdf"); //for macintosh
  +
getchar(); system("killall Preview"); // For macintosh
  +
  +
</nowiki></nomathjax></poem>
  +
  +
==References==
  +
  +
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html D.Kouznetsov. (2009). Solutions of F(z+1)=exp(F(z)) in the complex plane.. Mathematics of Computation, 78: 1647-1670. DOI:10.1090/S0025-5718-09-02188-7.
  +
  +
http://www.ils.uec.ac.jp/~dima/PAPERS/2010vladie.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.
  +
  +
[[Category:Complex map]]
  +
[[Category:Tetration]]
  +
[[Category:Natural tetration]]
  +
[[Category:Book]]
  +
[[Category:BookMap]]
  +
[[Category:Lambert Publishing]]
  +
[[Category:Ingimage]]

Latest revision as of 08:53, 1 December 2018

Complex map of the natural tetration without labels.

This image is loaded to the ingrampublishing.com

In order to use it in the book Суперфункции,

https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0

\url{http://mizugadro.mydns.jp/BOOK/201.pdf}

The low resolution draft also had been loaded at the site of ingrampublishing


C++ generator

Files ado.cin conto.cin fsexp.cin fslog.cin should be loaded in order to compile the code below


#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include<complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "fsexp.cin"
//#include "fslog.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
int M=801,M1=M+1;
int N=401,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
//FILE *o;o=fopen("b271t0.eps","w"); ado(o,87,87);
FILE *o;o=fopen("tetma.eps","w"); ado(o,1604,804);
fprintf(o,"802 402 translate\n 100 100 scale\n");
DO(m,M1) X[m]=-8.+.02*(m-.5);
DO(n,N1) Y[n]=-4.+.02*(n-.5);
for(m=-8;m<17;m++) {M(m,-4)L(m,4)}
for(n=-4;n<5;n++) {M( -8,n)L(8,n)} fprintf(o,"2 setlinecap .006 W 0 0 0 RGB S\n");
//fprintf(o,"/adobe-Roman findfont .6 scalefont setfont\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
                       f[m*N1+n]=9999;}
//DB b=sqrt(2);
DO(m,M1){x=X[m]; printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y); if(abs(z+2.)>.04)
       { c=FSEXP(z);
// c=FSLOG(z);
         p=Re(c); q=Im(c);
         if(p>-9999 && p<9999 && fabs(q)>1.e-12) g[m*N1+n]=p;
         if(q>-9999 && q<9999 && fabs(q)>1.e-12) f[m*N1+n]=q;
       }
        }}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
p=2.; q=1.1;;
//#include "plofu.cin"
p=2;q=1;
for(m=-19;m<19;m++)for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q);
                                                fprintf(o,".02 W 0 1 0 RGB S\n");
for(m=0;m<29;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);
                                                fprintf(o,".01 W 1 0 0 RGB S\n");
for(m=0;m<29;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);
                                                fprintf(o,".01 W 0 0 1 RGB S\n");

for(m= 1;m<20;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".03 W 1 0 0 RGB S\n");
for(m= 1;m<20;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".03 W 0 0 1 RGB S\n");
                conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".03 W .8 0 .8 RGB S\n");
for(m=-31;m<32;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".03 W 0 0 0 RGB S\n");

fprintf(o,"0 setlinejoin 0 setlinecap\n");
fprintf(o,"showpage\n");
fprintf(o,"%cTrailer\n",'%');
fclose(o);
       system("epstopdf tetma.eps");
       system( "open tetma.pdf"); //for macintosh
       getchar(); system("killall Preview"); // For macintosh

References

http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html D.Kouznetsov. (2009). Solutions of F(z+1)=exp(F(z)) in the complex plane.. Mathematics of Computation, 78: 1647-1670. DOI:10.1090/S0025-5718-09-02188-7.

http://www.ils.uec.ac.jp/~dima/PAPERS/2010vladie.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:14, 1 December 2018Thumbnail for version as of 06:14, 1 December 20183,341 × 1,675 (1.89 MB)Maintenance script (talk | contribs)Importing image file

There are no pages that use this file.

Metadata