Difference between revisions of "File:Vladi06.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of the approximation "tai" of natural [[tetration]], left, and the map of the corresponding agreement function $D$. |
||
− | Importing image file |
||
+ | |||
+ | <b>Left:</b> |
||
+ | |||
+ | $u\!+\!\mathrm i v = \mathrm{tai}(x+\mathrm i y)$ |
||
+ | |||
+ | <b>Right:</b> |
||
+ | |||
+ | $\displaystyle |
||
+ | D_6=D_6(z)=-\lg\left( \frac |
||
+ | {|\exp(\mathrm{tai}(z\!-\!1)-\mathrm{tai}(z)|} |
||
+ | {|\exp(\mathrm{tai}(z\!-\!1)|+|\mathrm{tai}(z)|} \right) |
||
+ | $ |
||
+ | |||
+ | levels $D=1,2,4,6,8,10,12,14 ~ ~ $ are drawn. Level $D=1$ is drawn with thick line. |
||
+ | |||
+ | Usage: this is figure 14.8 of the book [[Суперфункции]] (2014, In Russian) |
||
+ | <ref> |
||
+ | https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
+ | http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf <br> |
||
+ | http://mizugadro.mydns.jp/BOOK/202.pdf |
||
+ | Д.Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014. |
||
+ | </ref> |
||
+ | ; the English version is in preparation in 2015. |
||
+ | |||
+ | First time published in the [[Vladikavkaz Matehmatical Journal]] |
||
+ | <ref> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf |
||
+ | D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. |
||
+ | Figure 6. |
||
+ | </ref>. |
||
+ | |||
+ | ==[[C++]] generator of the first picture== |
||
+ | [[fsexp.cin]], |
||
+ | [[ado.cin]], |
||
+ | [[conto.cin]] |
||
+ | should be loaded in order to compile the code below |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | //using namespace std; |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | |||
+ | #include "fsexp.cin" |
||
+ | //#include "superex.cin" |
||
+ | //#include "superlo.cin" |
||
+ | #include "conto.cin" |
||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
+ | z_type Zo=z_type(.31813150520476413, 1.3372357014306895); |
||
+ | z_type Zc=z_type(.31813150520476413,-1.3372357014306895); |
||
+ | |||
+ | int M=201,M1=M+1; |
||
+ | int N=201,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | //FILE *o;o=fopen("figtai3.eps","w");ado(o,0,0,82,82); |
||
+ | FILE *o;o=fopen("vladi06a.eps","w");ado(o,82,82); |
||
+ | fprintf(o,"41 11 translate\n 10 10 scale\n"); |
||
+ | |||
+ | DO(m,M1) X[m]=-4.+.04*(m-.5); |
||
+ | //DO(n,N1) Y[n]=-1.2 +.02*n*(1.+.000008*(n-8.)*(n-8)); |
||
+ | DO(n,N1) Y[n]=-1. +.04*(n-.5); |
||
+ | |||
+ | //DB sy=6./sinh(.005*N); |
||
+ | //DO(n,N1) Y[n]=sy*sinh(.01*(n-N/2-.5+10)); |
||
+ | |||
+ | for(m=-4;m<5;m++) { if(m==0){M(m,-1.1)L(m,6.1)} |
||
+ | else {M(m,-1)L(m,6)} } |
||
+ | for(n=-1;n<7;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; |
||
+ | f[m*N1+n]=9999; } |
||
+ | DO(m,M1){x=X[m]; printf("50 run at x=%6.3f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | c=tai3(z); |
||
+ | p=Re(c); q=Im(c); |
||
+ | if(p>-9 && p<9) g[m*N1+n]=p; |
||
+ | if(q>-9 && q<9) f[m*N1+n]=q; |
||
+ | }} |
||
+ | p=1;q=.5; |
||
+ | conto(o,g,w,v,X,Y,M,N, ( Re(Zo) ),-q,q); fprintf(o,".1 W 1 .5 1 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, ( Im(Zo) ),-q,q); fprintf(o,".1 W .2 1 .5 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (-Im(Zo) ),-q,q); fprintf(o,".1 W .5 1 .2 RGB S\n"); |
||
+ | |||
+ | #include"plofu.cin" |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf vladi06a.eps"); |
||
+ | system( "open vladi06a.pdf");//for macintosh |
||
+ | // system( "xpdf fig06a.pdf");//for linux |
||
+ | //getchar(); system("killall Preview");//for macintosh |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | ==[[C++]] generator of the second picture== |
||
+ | [[fsexp.cin]], |
||
+ | [[ado.cin]], |
||
+ | [[conto.cin]] |
||
+ | should be loaded in order to compile the code below |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | |||
+ | #include "fsexp.cin" |
||
+ | #include "conto.cin" |
||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
+ | //z_type Zo=z_type(.31813150520476413, 1.3372357014306895); |
||
+ | //z_type Zc=z_type(.31813150520476413,-1.3372357014306895); |
||
+ | |||
+ | int M=200,M1=M+1; |
||
+ | int N=201,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | //FILE *o;o=fopen("figtai3L.eps","w");ado(o,0,0,82,82); |
||
+ | FILE *o;o=fopen("vladi06b.eps","w");ado(o,82,82); |
||
+ | fprintf(o,"41 11 translate\n 10 10 scale\n"); |
||
+ | |||
+ | DO(m,M1) X[m]=-4.+.04*m; |
||
+ | DO(n,N1) Y[n]=-1.+.04*n; |
||
+ | |||
+ | //DB sy=6./sinh(.005*N); |
||
+ | //DO(n,N1) Y[n]=sy*sinh(.01*(n-N/2-.5+10)); |
||
+ | |||
+ | for(m=-4;m<5;m++) { if(m==0){M(m,-1.1)L(m,6.1)} |
||
+ | else {M(m,-1)L(m,6)} } |
||
+ | for(n=-1;n<7;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; |
||
+ | f[m*N1+n]=9999; } |
||
+ | DO(m,M1){x=X[m]; printf("run at x=%6.3f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | c=log(tai3(z+1.)); |
||
+ | d=tai3(z); |
||
+ | p=abs(c-d); |
||
+ | p=-log(p)/log(10.); |
||
+ | if(p>-999 && p<999) g[m*N1+n]=p; |
||
+ | }} |
||
+ | fprintf(o,"1 setlinecap 1 setlinejoin\n"); |
||
+ | |||
+ | #include"plodi.cin" |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf vladi06b.eps"); |
||
+ | system( "open vladi06b.pdf"); //for macintosh |
||
+ | // system( "xpdf vladi06b.pdf"); //for linux |
||
+ | //getchar(); system("killall Preview");//for macintosh |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | ==[[Latex]] combiner== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{graphicx} |
||
+ | \usepackage{rotating} |
||
+ | \usepackage{geometry} |
||
+ | \paperwidth 418px |
||
+ | %\paperheight 134px |
||
+ | \paperheight 190px |
||
+ | \topmargin -108pt |
||
+ | \oddsidemargin -80pt |
||
+ | \pagestyle{empty} |
||
+ | \begin{document} |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | |||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | |||
+ | \newcommand \taiax { |
||
+ | \put(-3,77){\sx{.5}{$y$}} |
||
+ | \put(-3,69){\sx{.5}{$6$}} |
||
+ | \put(-3,59){\sx{.5}{$5$}} |
||
+ | \put(-3,49){\sx{.5}{$4$}} |
||
+ | \put(-3,39){\sx{.5}{$3$}} |
||
+ | \put(-3,29){\sx{.5}{$2$}} |
||
+ | \put(-3,19){\sx{.5}{$1$}} |
||
+ | \put(-3, 9){\sx{.5}{$0$}} |
||
+ | \put(-5,-1){\sx{.5}{$-\!1$}} |
||
+ | \put( 7 ,-4){\sx{.5}{$-\!3$}} |
||
+ | \put(17 ,-4){\sx{.5}{$-\!2$}} |
||
+ | \put(27 ,-4){\sx{.5}{$-\!1$}} |
||
+ | \put(40 , -4){\sx{.5}{$0$}} |
||
+ | \put(50 , -4){\sx{.5}{$1$}} |
||
+ | \put(60 , -4){\sx{.5}{$2$}} |
||
+ | \put(70 , -4){\sx{.5}{$3$}} |
||
+ | \put(78.8 , -4){\sx{.5}{$x$}} |
||
+ | } |
||
+ | \sx{2.23}{\begin{picture}(100,80) |
||
+ | %\put(0,0){\includegraphics{figtai3}} |
||
+ | \put(0,0){\includegraphics{vladi06a}} |
||
+ | \put(13,55){\sx{.44}{\rot{-77} $ v\!=\!\Im(L)$ \ero }} |
||
+ | \put(23,62.4){\sx{.44}{\rot{-77} $ u\!=\!\Re(L)$ \ero }} |
||
+ | \put(34,65){\sx{.44}{\rot{-76} $ v\!=\!\Im(L)$ \ero }} |
||
+ | \put(45.6,66){\sx{.44}{\rot{-76} $ u\!=\!\Re(L)$ \ero }} |
||
+ | \put(57.6,65){\sx{.44}{\rot{-77} $ v\!=\!\Im(L)$ \ero }} |
||
+ | %\put(33,5){\sx{.4}{\rot{67} $ v\!=\!\Im(L^*)$ \ero }} |
||
+ | \put(42,7){\sx{.4}{\rot{86} $ u\!=\!1$ \ero }} |
||
+ | \put(35,24.6){\sx{.4}{\rot{-31} $ v\!=\!1$ \ero }} |
||
+ | %\put(28,16){\sx{.4}{\rot{37} $ v\!=\!-1$ \ero }} |
||
+ | \taiax |
||
+ | \end{picture}} |
||
+ | \sx{2.23}{\begin{picture}(80,80) |
||
+ | %\put(0,0){\includegraphics{figtai3L}} |
||
+ | \put(0,0){\includegraphics{vladi06b}} |
||
+ | \taiax |
||
+ | \put(26,40){\sx{.58}{$D_{5}\!>\!14$}} |
||
+ | \put(62,15){\sx{.58}{$D_{5}\!<\!1$}} |
||
+ | \end{picture}} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | [[Category:Tetration]] |
||
+ | [[Category:Book]] |
||
+ | [[Category:Complex map]] |
||
+ | [[Category:Agreement]] |
Latest revision as of 08:56, 1 December 2018
Complex map of the approximation "tai" of natural tetration, left, and the map of the corresponding agreement function $D$.
Left:
$u\!+\!\mathrm i v = \mathrm{tai}(x+\mathrm i y)$
Right:
$\displaystyle D_6=D_6(z)=-\lg\left( \frac
- the English version is in preparation in 2015.
C++ generator of the first picture
fsexp.cin, ado.cin, conto.cin should be loaded in order to compile the code below
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "fsexp.cin"
//#include "superex.cin"
//#include "superlo.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int M=201,M1=M+1;
int N=201,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
//FILE *o;o=fopen("figtai3.eps","w");ado(o,0,0,82,82);
FILE *o;o=fopen("vladi06a.eps","w");ado(o,82,82);
fprintf(o,"41 11 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-4.+.04*(m-.5);
//DO(n,N1) Y[n]=-1.2 +.02*n*(1.+.000008*(n-8.)*(n-8));
DO(n,N1) Y[n]=-1. +.04*(n-.5);
//DB sy=6./sinh(.005*N);
//DO(n,N1) Y[n]=sy*sinh(.01*(n-N/2-.5+10));
for(m=-4;m<5;m++) { if(m==0){M(m,-1.1)L(m,6.1)}
else {M(m,-1)L(m,6)} }
for(n=-1;n<7;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999; }
DO(m,M1){x=X[m]; printf("50 run at x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=tai3(z);
p=Re(c); q=Im(c);
if(p>-9 && p<9) g[m*N1+n]=p;
if(q>-9 && q<9) f[m*N1+n]=q;
}}
p=1;q=.5;
conto(o,g,w,v,X,Y,M,N, ( Re(Zo) ),-q,q); fprintf(o,".1 W 1 .5 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( Im(Zo) ),-q,q); fprintf(o,".1 W .2 1 .5 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-Im(Zo) ),-q,q); fprintf(o,".1 W .5 1 .2 RGB S\n");
#include"plofu.cin"
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf vladi06a.eps");
system( "open vladi06a.pdf");//for macintosh
// system( "xpdf fig06a.pdf");//for linux
//getchar(); system("killall Preview");//for macintosh
}
C++ generator of the second picture
fsexp.cin, ado.cin, conto.cin should be loaded in order to compile the code below
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "fsexp.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
//z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
//z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int M=200,M1=M+1;
int N=201,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
//FILE *o;o=fopen("figtai3L.eps","w");ado(o,0,0,82,82);
FILE *o;o=fopen("vladi06b.eps","w");ado(o,82,82);
fprintf(o,"41 11 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-4.+.04*m;
DO(n,N1) Y[n]=-1.+.04*n;
//DB sy=6./sinh(.005*N);
//DO(n,N1) Y[n]=sy*sinh(.01*(n-N/2-.5+10));
for(m=-4;m<5;m++) { if(m==0){M(m,-1.1)L(m,6.1)}
else {M(m,-1)L(m,6)} }
for(n=-1;n<7;n++) {M( -4,n)L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999; }
DO(m,M1){x=X[m]; printf("run at x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=log(tai3(z+1.));
d=tai3(z);
p=abs(c-d);
p=-log(p)/log(10.);
if(p>-999 && p<999) g[m*N1+n]=p;
}}
fprintf(o,"1 setlinecap 1 setlinejoin\n");
#include"plodi.cin"
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf vladi06b.eps");
system( "open vladi06b.pdf"); //for macintosh
// system( "xpdf vladi06b.pdf"); //for linux
//getchar(); system("killall Preview");//for macintosh
}
Latex combiner
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{rotating}
\usepackage{geometry}
\paperwidth 418px
%\paperheight 134px
\paperheight 190px
\topmargin -108pt
\oddsidemargin -80pt
\pagestyle{empty}
\begin{document}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \taiax {
\put(-3,77){\sx{.5}{$y$}}
\put(-3,69){\sx{.5}{$6$}}
\put(-3,59){\sx{.5}{$5$}}
\put(-3,49){\sx{.5}{$4$}}
\put(-3,39){\sx{.5}{$3$}}
\put(-3,29){\sx{.5}{$2$}}
\put(-3,19){\sx{.5}{$1$}}
\put(-3, 9){\sx{.5}{$0$}}
\put(-5,-1){\sx{.5}{$-\!1$}}
\put( 7 ,-4){\sx{.5}{$-\!3$}}
\put(17 ,-4){\sx{.5}{$-\!2$}}
\put(27 ,-4){\sx{.5}{$-\!1$}}
\put(40 , -4){\sx{.5}{$0$}}
\put(50 , -4){\sx{.5}{$1$}}
\put(60 , -4){\sx{.5}{$2$}}
\put(70 , -4){\sx{.5}{$3$}}
\put(78.8 , -4){\sx{.5}{$x$}}
}
\sx{2.23}{\begin{picture}(100,80)
%\put(0,0){\includegraphics{figtai3}}
\put(0,0){\includegraphics{vladi06a}}
\put(13,55){\sx{.44}{\rot{-77} $ v\!=\!\Im(L)$ \ero }}
\put(23,62.4){\sx{.44}{\rot{-77} $ u\!=\!\Re(L)$ \ero }}
\put(34,65){\sx{.44}{\rot{-76} $ v\!=\!\Im(L)$ \ero }}
\put(45.6,66){\sx{.44}{\rot{-76} $ u\!=\!\Re(L)$ \ero }}
\put(57.6,65){\sx{.44}{\rot{-77} $ v\!=\!\Im(L)$ \ero }}
%\put(33,5){\sx{.4}{\rot{67} $ v\!=\!\Im(L^*)$ \ero }}
\put(42,7){\sx{.4}{\rot{86} $ u\!=\!1$ \ero }}
\put(35,24.6){\sx{.4}{\rot{-31} $ v\!=\!1$ \ero }}
%\put(28,16){\sx{.4}{\rot{37} $ v\!=\!-1$ \ero }}
\taiax
\end{picture}}
\sx{2.23}{\begin{picture}(80,80)
%\put(0,0){\includegraphics{figtai3L}}
\put(0,0){\includegraphics{vladi06b}}
\taiax
\put(26,40){\sx{.58}{$D_{5}\!>\!14$}}
\put(62,15){\sx{.58}{$D_{5}\!<\!1$}}
\end{picture}}
\end{document}
References
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. - ↑ http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. Figure 6.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:14, 1 December 2018 | 1,741 × 791 (418 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.