Difference between revisions of "File:Vladi07.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | Maps of agreement of approximations of natural [[tetration]] with elementary functions [[fima]] and [[maclo]], used in the implementation [[fsexp.cin]]. |
||
− | Importing image file |
||
+ | |||
+ | Left: $D=D_6(x\!+\!\mathrm i y)$; |
||
+ | |||
+ | $\displaystyle |
||
+ | D_6(z)= - \ln \left( \frac |
||
+ | {|\mathrm{tai}(z) - \mathrm{fima}(z)|} |
||
+ | {|\mathrm{tai}(z)|+|\mathrm{fima}(z)|} |
||
+ | \right)$ |
||
+ | |||
+ | right: $D=D_7(x\!+\!\mathrm i y)$; |
||
+ | |||
+ | $\displaystyle |
||
+ | D_7(z)= - \ln \left( \frac |
||
+ | {|\mathrm{tai}(z) - \mathrm{maclo}(z)|} |
||
+ | {|\mathrm{tai}(z)|+|\mathrm{maclo}(z)|} |
||
+ | \right)$ |
||
+ | |||
+ | Levels $D=\mathrm{const}$ are drawn with step 2, but the exception is dome for level $D=1$, this level is drawn with thick lines. |
||
+ | |||
+ | Usage: this is figure 14.10 of the book [[Суперфункции]] (2014, In Russian) <ref> |
||
+ | https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
+ | http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf <br> |
||
+ | http://mizugadro.mydns.jp/BOOK/202.pdf |
||
+ | Д.Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014. |
||
+ | </ref>; the English version is in preparation in 2015. |
||
+ | |||
+ | First time published in the [[Vladikavkaz Matehmatical Journal]] |
||
+ | <ref> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf |
||
+ | D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. |
||
+ | Figure 7. |
||
+ | </ref>. |
||
+ | |||
+ | ==Refereces== |
||
+ | <references/> |
||
+ | |||
+ | ==[[C++]] generator of the first picture== |
||
+ | [[Fsexp.cin]], |
||
+ | [[ado.cin]], |
||
+ | [[conto.cin]], |
||
+ | [[plodi.cin]] |
||
+ | should be loaded in order to compile the code below |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | //#include <complex.h> |
||
+ | //#define z_type complex<double> |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | |||
+ | #include "fsexp.cin" |
||
+ | |||
+ | #include "conto.cin" |
||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
+ | |||
+ | int M=100,M1=M+1; |
||
+ | int N=101,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("vladi07a.eps","w");ado(o,82,82); |
||
+ | fprintf(o,"41 11 translate\n 10 10 scale\n"); |
||
+ | |||
+ | DO(m,M1) X[m]=-4.+.08*(m-.5); |
||
+ | DO(n,N1)Y[n]= -1 +.08*(n-.5); |
||
+ | |||
+ | for(m=-3;m<4;m++) { if(m==0){M(m,-0.1)L(m,6.1)} else {M(m,0)L(m,6)} } |
||
+ | for(n=0;n<7;n++) { M( -3,n)L(3,n)} |
||
+ | fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; printf("run at x=%6.3f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | c=tai3(z); |
||
+ | // d=fima1(z); |
||
+ | d=fima(z); |
||
+ | p=abs(c-d)/(abs(c)+abs(d)); |
||
+ | p=-log(p)/log(10.); |
||
+ | // p=Re(c); q=Im(c); |
||
+ | if(p>-999 && p<999 && fabs(p)> 1.e-8 && fabs(p-1.)>1.e-8) g[m*N1+n]=p; |
||
+ | // if(q>-999 && q<999 && fabs(q)> 1.e-8) f[m*N1+n]=q; |
||
+ | }} |
||
+ | |||
+ | #include"plodi.cin" |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf vladi07a.eps"); |
||
+ | system( "open vladi07a.pdf");//macintosh |
||
+ | // getchar(); system("killall Preview"); //macintosh |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[C++]] generator of the second picture== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | |||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | //#include <complex.h> |
||
+ | //#define z_type complex<double> |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | |||
+ | #include "fsexp.cin" |
||
+ | |||
+ | #include "conto.cin" |
||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
+ | |||
+ | int M=100,M1=M+1; |
||
+ | int N=101,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("vladi07b.eps","w");ado(o,82,82); |
||
+ | fprintf(o,"41 11 translate\n 10 10 scale\n"); |
||
+ | |||
+ | DO(m,M1) X[m]=-4.+.08*(m-.5); |
||
+ | DO(n,N1)Y[n]= -1 +.08*(n-.5); |
||
+ | |||
+ | for(m=-3;m<4;m++) { if(m==0){M(m,-0.1)L(m,6.1)} else {M(m,0)L(m,6)} } |
||
+ | for(n=0;n<7;n++) { M( -3,n)L(3,n)} |
||
+ | fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; printf("run at x=%6.3f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | c=tai3(z); |
||
+ | d=maclo(z); |
||
+ | // d=fima1(z); |
||
+ | p=abs(c-d)/(abs(c)+abs(d)); |
||
+ | p=-log(p)/log(10.); |
||
+ | // p=Re(c); q=Im(c); |
||
+ | if(p>-999 && p<999 && fabs(p)> 1.e-8 && fabs(p-1.)>1.e-8) g[m*N1+n]=p; |
||
+ | // if(q>-999 && q<999 && fabs(q)> 1.e-8) f[m*N1+n]=q; |
||
+ | }} |
||
+ | |||
+ | #include"plodi.cin" |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf vladi07b.eps"); |
||
+ | system( "open vladi07b.pdf");//macintosh |
||
+ | // getchar(); system("killall Preview");//macintosh |
||
+ | } |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] combiner== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{graphicx} |
||
+ | \usepackage{rotating} |
||
+ | \usepackage{geometry} |
||
+ | \paperwidth 356px |
||
+ | %\paperheight 134px |
||
+ | \paperheight 184px |
||
+ | \topmargin -98pt |
||
+ | \oddsidemargin -94pt |
||
+ | \pagestyle{empty} |
||
+ | \begin{document} |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | |||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | |||
+ | \newcommand \tafiax { |
||
+ | \put(7,68){\sx{.5}{$y$}} |
||
+ | %\put(5,74){\sx{.5}{$\Im(z)$}} |
||
+ | %\put(7,69){\sx{.5}{$6$}} |
||
+ | \put(7,59){\sx{.5}{$5$}} |
||
+ | \put(7,49){\sx{.5}{$4$}} |
||
+ | \put(7,39){\sx{.5}{$3$}} |
||
+ | \put(7,29){\sx{.5}{$2$}} |
||
+ | \put(7,19){\sx{.5}{$1$}} |
||
+ | \put(7, 9){\sx{.5}{$0$}} |
||
+ | \put( 7 ,6){\sx{.5}{$-\!3$}} |
||
+ | \put(17 ,6){\sx{.5}{$-\!2$}} |
||
+ | \put(27 ,6){\sx{.5}{$-\!1$}} |
||
+ | \put(40 , 6){\sx{.5}{$0$}} |
||
+ | \put(50 , 6){\sx{.5}{$1$}} |
||
+ | \put(60 , 6){\sx{.5}{$2$}} |
||
+ | %\put(70 , 6){\sx{.5}{$3$}} |
||
+ | %\put(78 , 6){\sx{.5}{$\Re(z)$}} |
||
+ | \put(70 , 6){\sx{.5}{$x$}} |
||
+ | } |
||
+ | %\sx{2.33}{\begin{picture}(96,75) |
||
+ | \sx{2.33}{\begin{picture}(80,75) |
||
+ | %\put(0,0){\includegraphics{figtaifima}} |
||
+ | \put(0,0){\includegraphics{vladi07a}} |
||
+ | \tafiax |
||
+ | \put(31,54){\sx{.45}{$D\!>\!14$}} |
||
+ | \end{picture}} |
||
+ | \sx{2.33}{\begin{picture}(84,70) |
||
+ | %\put(0,0){\includegraphics{figtaimaclo}} |
||
+ | \put(0,0){\includegraphics{vladi07b}} |
||
+ | \tafiax |
||
+ | \put(33,55){\sx{.52}{$D\!<\!1$}} |
||
+ | \put(33,24){\sx{.45}{$D\!>\!14$}} |
||
+ | \end{picture}} |
||
+ | |||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | [[Category:Agreement]] |
||
+ | [[Category:Book]] |
||
+ | [[Category:Agreement]] |
||
+ | [[Category:Complex map]] |
||
+ | [[Category:BookMap]] |
||
+ | [[Category:Tetration]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
Latest revision as of 08:56, 1 December 2018
Maps of agreement of approximations of natural tetration with elementary functions fima and maclo, used in the implementation fsexp.cin.
Left: $D=D_6(x\!+\!\mathrm i y)$;
$\displaystyle D_6(z)= - \ln \left( \frac
Refereces
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. - ↑ http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. Figure 7.
C++ generator of the first picture
Fsexp.cin, ado.cin, conto.cin, plodi.cin should be loaded in order to compile the code below
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
//#include <complex.h>
//#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "fsexp.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
int M=100,M1=M+1;
int N=101,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("vladi07a.eps","w");ado(o,82,82);
fprintf(o,"41 11 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-4.+.08*(m-.5);
DO(n,N1)Y[n]= -1 +.08*(n-.5);
for(m=-3;m<4;m++) { if(m==0){M(m,-0.1)L(m,6.1)} else {M(m,0)L(m,6)} }
for(n=0;n<7;n++) { M( -3,n)L(3,n)}
fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; printf("run at x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=tai3(z);
// d=fima1(z);
d=fima(z);
p=abs(c-d)/(abs(c)+abs(d));
p=-log(p)/log(10.);
// p=Re(c); q=Im(c);
if(p>-999 && p<999 && fabs(p)> 1.e-8 && fabs(p-1.)>1.e-8) g[m*N1+n]=p;
// if(q>-999 && q<999 && fabs(q)> 1.e-8) f[m*N1+n]=q;
}}
#include"plodi.cin"
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf vladi07a.eps");
system( "open vladi07a.pdf");//macintosh
// getchar(); system("killall Preview"); //macintosh
}
C++ generator of the second picture
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
//#include <complex.h>
//#define z_type complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "fsexp.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
int M=100,M1=M+1;
int N=101,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("vladi07b.eps","w");ado(o,82,82);
fprintf(o,"41 11 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-4.+.08*(m-.5);
DO(n,N1)Y[n]= -1 +.08*(n-.5);
for(m=-3;m<4;m++) { if(m==0){M(m,-0.1)L(m,6.1)} else {M(m,0)L(m,6)} }
for(n=0;n<7;n++) { M( -3,n)L(3,n)}
fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; printf("run at x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=tai3(z);
d=maclo(z);
// d=fima1(z);
p=abs(c-d)/(abs(c)+abs(d));
p=-log(p)/log(10.);
// p=Re(c); q=Im(c);
if(p>-999 && p<999 && fabs(p)> 1.e-8 && fabs(p-1.)>1.e-8) g[m*N1+n]=p;
// if(q>-999 && q<999 && fabs(q)> 1.e-8) f[m*N1+n]=q;
}}
#include"plodi.cin"
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf vladi07b.eps");
system( "open vladi07b.pdf");//macintosh
// getchar(); system("killall Preview");//macintosh
}
Latex combiner
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{rotating}
\usepackage{geometry}
\paperwidth 356px
%\paperheight 134px
\paperheight 184px
\topmargin -98pt
\oddsidemargin -94pt
\pagestyle{empty}
\begin{document}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \tafiax {
\put(7,68){\sx{.5}{$y$}}
%\put(5,74){\sx{.5}{$\Im(z)$}}
%\put(7,69){\sx{.5}{$6$}}
\put(7,59){\sx{.5}{$5$}}
\put(7,49){\sx{.5}{$4$}}
\put(7,39){\sx{.5}{$3$}}
\put(7,29){\sx{.5}{$2$}}
\put(7,19){\sx{.5}{$1$}}
\put(7, 9){\sx{.5}{$0$}}
\put( 7 ,6){\sx{.5}{$-\!3$}}
\put(17 ,6){\sx{.5}{$-\!2$}}
\put(27 ,6){\sx{.5}{$-\!1$}}
\put(40 , 6){\sx{.5}{$0$}}
\put(50 , 6){\sx{.5}{$1$}}
\put(60 , 6){\sx{.5}{$2$}}
%\put(70 , 6){\sx{.5}{$3$}}
%\put(78 , 6){\sx{.5}{$\Re(z)$}}
\put(70 , 6){\sx{.5}{$x$}}
}
%\sx{2.33}{\begin{picture}(96,75)
\sx{2.33}{\begin{picture}(80,75)
%\put(0,0){\includegraphics{figtaifima}}
\put(0,0){\includegraphics{vladi07a}}
\tafiax
\put(31,54){\sx{.45}{$D\!>\!14$}}
\end{picture}}
\sx{2.33}{\begin{picture}(84,70)
%\put(0,0){\includegraphics{figtaimaclo}}
\put(0,0){\includegraphics{vladi07b}}
\tafiax
\put(33,55){\sx{.52}{$D\!<\!1$}}
\put(33,24){\sx{.45}{$D\!>\!14$}}
\end{picture}}
\end{document}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:14, 1 December 2018 | 741 × 383 (100 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.