Difference between revisions of "SdPow"
m (Text replacement - "\$([^\$]+)\$" to "\\(\1\\)") |
|||
Line 1: | Line 1: | ||
[[File:Superpower2plot.jpg|360px|thumb|Fig.1. Quadratic function (black curve) and two its [[superfunction]]s]] |
[[File:Superpower2plot.jpg|360px|thumb|Fig.1. Quadratic function (black curve) and two its [[superfunction]]s]] |
||
− | [[File:SdPow2map.jpg|360px|thumb|Fig.2. |
+ | [[File:SdPow2map.jpg|360px|thumb|Fig.2. \(u\!+\mathrm i v=\mathrm{SdPow}_2(x\!+\mathrm i y)\)]] |
− | [[SdPow]] is specific [[superpower]] function, id est, the [[superfunction]] of the [[power function]] |
+ | [[SdPow]] is specific [[superpower]] function, id est, the [[superfunction]] of the [[power function]] \(~z\mapsto z^a\!=\!\exp(\ln(z) \,a)~\) |
− | For given parameter |
+ | For given parameter \(a\), |
− | + | \(\mathrm{SdPow}_a(z)=\exp(a^z)\) |
|
− | Usually, it is assumed, that |
+ | Usually, it is assumed, that \(a\!>\!1\). |
==Transfer function== |
==Transfer function== |
||
− | Function |
+ | Function \(F\!=\!\mathrm{SdPow}_a\) is [[superfunction]] for the |
− | specific [[power function]] |
+ | specific [[power function]] \(T(z)\!=\!z^a\). |
The superfunction satisfies the [[transfer equation]] |
The superfunction satisfies the [[transfer equation]] |
||
− | + | \(T(F(z))=F(z\!+\!1)\) |
|
− | For this specific transfer function |
+ | For this specific transfer function \(T\), the two real-holomorphix solutions are [[SuPow]] and [[SdPow]]: |
− | + | \(\mathrm{SdPow}_a(z)=\exp(-a^z)\) |
|
− | + | \(\mathrm{SuPow}_a(z)=\exp(a^z)\) |
|
− | For the [[power function]] both, the [[superfunction]]s and the [[Abel function]]s can be expressed as elementary functions. For |
+ | For the [[power function]] both, the [[superfunction]]s and the [[Abel function]]s can be expressed as elementary functions. For \(a\!=\!2\), these functions are who functions are shown in Fig.1. |
− | For the same |
+ | For the same \(a\!=\!2\), the [[complex map]] of function [[SdPow]] is shown in FIg.2. |
==References== |
==References== |
Latest revision as of 18:48, 30 July 2019
SdPow is specific superpower function, id est, the superfunction of the power function \(~z\mapsto z^a\!=\!\exp(\ln(z) \,a)~\)
For given parameter \(a\),
\(\mathrm{SdPow}_a(z)=\exp(a^z)\)
Usually, it is assumed, that \(a\!>\!1\).
Transfer function
Function \(F\!=\!\mathrm{SdPow}_a\) is superfunction for the specific power function \(T(z)\!=\!z^a\). The superfunction satisfies the transfer equation
\(T(F(z))=F(z\!+\!1)\)
For this specific transfer function \(T\), the two real-holomorphix solutions are SuPow and SdPow:
\(\mathrm{SdPow}_a(z)=\exp(-a^z)\)
\(\mathrm{SuPow}_a(z)=\exp(a^z)\)
For the power function both, the superfunctions and the Abel functions can be expressed as elementary functions. For \(a\!=\!2\), these functions are who functions are shown in Fig.1.
For the same \(a\!=\!2\), the complex map of function SdPow is shown in FIg.2.
References
Keywords
AdPow, Elementary function, Power function, SdPow, SuPow, Superfunction Superpower