Difference between revisions of "File:Besselk0mapT900.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of function [[BesselK0]]. |
||
− | Importing image file |
||
+ | |||
+ | $u+\mathrm i v= \mathrm{BesselK0}(x+\mathrm i y)$ |
||
+ | |||
+ | ==C++ implementation of BesselK0== |
||
+ | // Preliminary version of the [[C++]] implementation of BesselK0 below should be saved as [[besselk09.cin]]. |
||
+ | |||
+ | // Besselk09 returns 9 correct decimal digits. |
||
+ | //#include "besselk0o.cin" |
||
+ | z_type besselk0o(z_type z){ z_type L=log(z); z_type t=z*z; |
||
+ | return 0.115931515658412449 - L |
||
+ | +t*(0.278982878914603112 - 0.25 * L |
||
+ | +t*(0.0252489299321626945 - 0.015625 * L |
||
+ | +t*(0.000846035090708222996 - 0.000434027777777777778*L |
||
+ | +t*(0.0000149147192992604288- 6.78168402777777778e-6 *L |
||
+ | +t*(1.62710561048159843e-7 - 6.78168402777777778e-8 *L |
||
+ | +t*(1.20842616500779726e-9 - 4.70950279706790123e-10*L |
||
+ | +t*(6.50869783874735494e-12 - 2.40280754952443941e-12*L |
||
+ | +t*(2.65978468063980854e-14 - 9.38596699032984143e-15*L |
||
+ | +t*(8.53109013195859431e-17 - 2.89690339207711155e-17*L |
||
+ | +t*(2.205195117791576e-19 - 7.242258480192779e-20*L |
||
+ | +t*(4.692218659603046e-22 - 1.4963343967340453e-22*L |
||
+ | +t*(8.362696515042043e-25 - 2.5978027721077174e-25*L |
||
+ | +t*(1.2666460795135898e-27 - 3.8429035090350849e-28*L |
||
+ | +t*(1.6506318753729743e-30 - 4.9016626390753634e-31*L |
||
+ | +t*(1.8703440292223815e-33 - 5.446291821194848e-34*L |
||
+ | +t*(1.8597493682664544e-36 - 5.318644356635594e-37*L |
||
+ | +t*(1.6358438681148629e-39 - 4.6009034226951505e-40*L |
||
+ | +t*(1.2819478724424317e-42 - 3.5500798014623075e-43*L |
||
+ | +t*(9.007150297620802e-46 - 2.4585040176331769e-46*L |
||
+ | +t*(5.706297186564038e-49 - 1.5365650110207356e-49*L |
||
+ | +t*(3.2763418078194994e-52 - 8.710686003518909e-53*L |
||
+ | +t*(1.7127767743327592e-55 - 4.4993212828093539e-56*L |
||
+ | +t*(8.186857470603763e-59 - 2.1263333094562164e-59*L |
||
+ | +t*(3.5917772099961397e-62 - 9.228877211181495e-63*L |
||
+ | +t*(1.4514770875363463e-65 - 3.6915508844725979e-66*L |
||
+ | +t*(5.420397042044871e-69 - 1.3652185223641265e-69*L |
||
+ | )))) )))) )))) )))) )))) )))) ) ; } |
||
+ | |||
+ | z_type besselk0O(z_type z){ z_type t=1./z, q=sqrt(t); z_type s; |
||
+ | s=1.25331413731550025 + |
||
+ | t*(-0.156664267164437531 + |
||
+ | t*( 0.0881236502799961114+ |
||
+ | t*(-0.0917954690416626161+ |
||
+ | t*( 0.140561811970045881 + |
||
+ | t*(-0.284637669239342909 + |
||
+ | t*( 0.717524124540843582 + |
||
+ | t*(-2.16538530441790295 + |
||
+ | t*( 7.61268271084419007 + |
||
+ | t*(-30.5564625476940407 + |
||
+ | t*( 137.886037246469359 + |
||
+ | t*(-690.997073019238491 + |
||
+ | t*( 3807.68178778309543 + |
||
+ | t*(-22882.7030515811024 + |
||
+ | t*(148941.879683951997 + |
||
+ | t*(-1.0438343401183636e6 |
||
+ | )))) )))) )))) ))) ; return exp(-z)*q*s;} |
||
+ | |||
+ | z_type besselk09(z_type z){ |
||
+ | DB x=Re(z)+3.8, y=Im(z); if( x*x+y*y < 13*13 ) |
||
+ | return besselk0o(z); |
||
+ | return besselk0O(z); } |
||
+ | |||
+ | ==C++ generator of curves== |
||
+ | // File [[besselk09.cin]] above and [[conto.cin]] and [[ado.cin]] should be stored in the working directory in order to compile the [[C++]] code below. |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | #include "besselk09.cin" |
||
+ | |||
+ | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | int M=401,M1=M+1; |
||
+ | int N=401,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("besselk0map.eps","w");ado(o,162,162); |
||
+ | fprintf(o,"81 81 translate\n 10 10 scale\n"); |
||
+ | DO(n,200)Y[n]=-8.+.04*n; |
||
+ | Y[200]=-.006; |
||
+ | Y[201]= .006; |
||
+ | for(n=202;n<N1;n++) Y[n]=-8.+.04*(n-1); |
||
+ | DO(m,M1)X[m]=Y[m]; |
||
+ | // DO(m,M1)X[m]=-4.+.04*(m-.5); |
||
+ | for(m=-8;m<9;m++){if(m==0){M(m,-8.1)L(m,8.1)} else{M(m,-8)L(m,8)}} |
||
+ | for(n=-8;n<9;n++){ M( -8,n)L(8,n)} |
||
+ | fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | c= besselk09(z); |
||
+ | // c= besselk0O(z); |
||
+ | // d= besselk0o(z); |
||
+ | // p=abs((c-d)/(c+d)); p=-log(p)/log(10.); |
||
+ | p=Re(c); q=Im(c); |
||
+ | if(p>-43. && p<43. |
||
+ | && q>-43. && q<43. |
||
+ | ) |
||
+ | {g[m*N1+n]=p; |
||
+ | f[m*N1+n]=q; |
||
+ | } |
||
+ | }} |
||
+ | //fprintf(o,"-3.8 0 13 0 360 arc C 1 .8 1 RGB .5 W S\n"); |
||
+ | // #include "plodi.cin" |
||
+ | // #include "plofu.cin" |
||
+ | fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.5;q=1.2; |
||
+ | for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n"); |
||
+ | for(m=1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".03 W .9 0 0 RGB S\n"); |
||
+ | for(m=1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".03 W 0 0 .9 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".03 W .6 0 .6 RGB S\n"); |
||
+ | for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); |
||
+ | M(0,0)L(-8,0) fprintf(o,"0 setlinecap 1 1 1 RGB .02 W S\n"); |
||
+ | DO(m,32){ M(-.25*(m+.25),0)L(-.25*(m+.75),0) fprintf(o,"0 0 0 RGB .035 W S\n"); } |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf besselk0map.eps"); |
||
+ | system( "open besselk0map.pdf"); |
||
+ | getchar(); system("killall Preview");//for mac |
||
+ | } |
||
+ | |||
+ | ==Latex generator of labels== |
||
+ | % File [[besselk0map.pdf]] should be generated with the [[C++]] code above in order to compile the [[Latex]] document below: |
||
+ | |||
+ | <nowiki> |
||
+ | \documentclass[12pt]{article} % <br> |
||
+ | \usepackage{geometry} % <br> |
||
+ | \usepackage{graphicx} % <br> |
||
+ | \usepackage{rotating} % <br> |
||
+ | \usepackage{hyperref} % <br> |
||
+ | \paperwidth 170pt % <br> |
||
+ | \paperheight 169pt % <br> |
||
+ | \textwidth 180pt % <br> |
||
+ | \textheight 180pt % <br> |
||
+ | \topmargin -108pt % <br> |
||
+ | \oddsidemargin -72pt % <br> |
||
+ | \parindent 0pt % <br> |
||
+ | \begin {document} % <br> |
||
+ | \newcommand \sx {\scalebox} % <br> |
||
+ | \newcommand \rme {{e}} % <br> |
||
+ | \newcommand \rmi {{\rm i}} %imaginary unity is always roman font % <br> |
||
+ | \newcommand \ds {\displaystyle} % <br> |
||
+ | \newcommand \bN {\mathbb{N}} % <br> |
||
+ | \newcommand \bC {\mathbb{C}} % <br> |
||
+ | \newcommand \bR {\mathbb{R}} % <br> |
||
+ | \newcommand \cO {\mathcal{O}} % <br> |
||
+ | \newcommand \cF {\mathcal{F}} % <br> |
||
+ | \newcommand \rot {\begin{rotate}} % <br> |
||
+ | \newcommand \ero {\end{rotate}} % <br> |
||
+ | \newcommand \nS {\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} % <br> |
||
+ | \newcommand \pS {{~}~{~}} % <br> |
||
+ | \newcommand \fac {\mathrm{Factorial}} % <br> |
||
+ | \begin{picture}(166,166) %<br> |
||
+ | \put(8,5){\includegraphics{besselk0map.pdf}} % %<br> |
||
+ | \put( 3,163){\sx{.8}{$y$}} %<br> |
||
+ | \put( 3,143){\sx{.8}{$6$}} %<br> |
||
+ | \put( 3,123){\sx{.8}{$4$}} %<br> |
||
+ | \put( 3,103){\sx{.8}{$2$}} %<br> |
||
+ | \put( 3,83){\sx{.8}{$0$}} %<br> |
||
+ | \put(-3,63){\sx{.8}{$-2$}} %<br> |
||
+ | \put(-3,43){\sx{.8}{$-4$}} %<br> |
||
+ | \put(-3,23){\sx{.8}{$-6$}} %<br> |
||
+ | \put(23,-1){\sx{.75}{$-6$}} %<br> |
||
+ | \put(43,-1){\sx{.75}{$-4$}} %<br> |
||
+ | \put(63,-1){\sx{.75}{$-2$}} %<br> |
||
+ | \put(87.4,-1){\sx{.75}{$0$}} %<br> |
||
+ | \put(107.4,-1){\sx{.75}{$2$}} %<br> |
||
+ | \put(127.4,-1){\sx{.75}{$4$}} %<br> |
||
+ | \put(147.4,-1){\sx{.75}{$6$}} %<br> |
||
+ | \put(164.6,-.5){\sx{.8}{$x$}} %<br> |
||
+ | \put(12,83.5){\bf cut} %<br> |
||
+ | \put(142,157.8){$u\!=\!0$} %<br> |
||
+ | \put(142,143.0){$v\!=\!0$} %<br> |
||
+ | \put(142,127.7){$u\!=\!0$} %<br> |
||
+ | \put(142,113.0){$v\!=\!0$} %<br> |
||
+ | \put(142,98.0){$u\!=\!0$} %<br> |
||
+ | \put(142,83.5){$v\!=\!0$} %central %<br> |
||
+ | \put(142,68.0){$u\!=\!0$} %<br> |
||
+ | \put(142,54.0){$v\!=\!0$} %<br> |
||
+ | \put(142,39.0){$u\!=\!0$} %<br> |
||
+ | \put(142,24.0){$v\!=\!0$} %<br> |
||
+ | \put(142,9.0){$u\!=\!0$} %<br> |
||
+ | % %<br> |
||
+ | \put(102.6,93){\sx{.6}{$v\!=\!-0.2$}} %<br> |
||
+ | \put(104,87){\sx{.6}{$u\!=\!0.2$}} %<br> |
||
+ | \put(103,77){\sx{.6}{$v\!=\!0.2$}} %<br> |
||
+ | \put(101.6,61){\sx{.6}{$u\!=\!-0.2$}} %<br> |
||
+ | \put(99.4,48){\sx{.6}{$v\!=\!-0.2$}} %<br> |
||
+ | \end{picture} % %<br> |
||
+ | \end{document} % |
||
+ | </nowiki> |
||
+ | |||
+ | [[Category:Complex map]] |
||
+ | [[Category:Besselk0]] |
||
+ | [[Category:Bessel function]] |
||
+ | [[Category:Cylindric function]] |
Latest revision as of 09:41, 21 June 2013
Complex map of function BesselK0.
$u+\mathrm i v= \mathrm{BesselK0}(x+\mathrm i y)$
C++ implementation of BesselK0
// Preliminary version of the C++ implementation of BesselK0 below should be saved as besselk09.cin.
// Besselk09 returns 9 correct decimal digits. //#include "besselk0o.cin" z_type besselk0o(z_type z){ z_type L=log(z); z_type t=z*z; return 0.115931515658412449 - L +t*(0.278982878914603112 - 0.25 * L +t*(0.0252489299321626945 - 0.015625 * L +t*(0.000846035090708222996 - 0.000434027777777777778*L +t*(0.0000149147192992604288- 6.78168402777777778e-6 *L +t*(1.62710561048159843e-7 - 6.78168402777777778e-8 *L +t*(1.20842616500779726e-9 - 4.70950279706790123e-10*L +t*(6.50869783874735494e-12 - 2.40280754952443941e-12*L +t*(2.65978468063980854e-14 - 9.38596699032984143e-15*L +t*(8.53109013195859431e-17 - 2.89690339207711155e-17*L +t*(2.205195117791576e-19 - 7.242258480192779e-20*L +t*(4.692218659603046e-22 - 1.4963343967340453e-22*L +t*(8.362696515042043e-25 - 2.5978027721077174e-25*L +t*(1.2666460795135898e-27 - 3.8429035090350849e-28*L +t*(1.6506318753729743e-30 - 4.9016626390753634e-31*L +t*(1.8703440292223815e-33 - 5.446291821194848e-34*L +t*(1.8597493682664544e-36 - 5.318644356635594e-37*L +t*(1.6358438681148629e-39 - 4.6009034226951505e-40*L +t*(1.2819478724424317e-42 - 3.5500798014623075e-43*L +t*(9.007150297620802e-46 - 2.4585040176331769e-46*L +t*(5.706297186564038e-49 - 1.5365650110207356e-49*L +t*(3.2763418078194994e-52 - 8.710686003518909e-53*L +t*(1.7127767743327592e-55 - 4.4993212828093539e-56*L +t*(8.186857470603763e-59 - 2.1263333094562164e-59*L +t*(3.5917772099961397e-62 - 9.228877211181495e-63*L +t*(1.4514770875363463e-65 - 3.6915508844725979e-66*L +t*(5.420397042044871e-69 - 1.3652185223641265e-69*L )))) )))) )))) )))) )))) )))) ) ; }
z_type besselk0O(z_type z){ z_type t=1./z, q=sqrt(t); z_type s; s=1.25331413731550025 + t*(-0.156664267164437531 + t*( 0.0881236502799961114+ t*(-0.0917954690416626161+ t*( 0.140561811970045881 + t*(-0.284637669239342909 + t*( 0.717524124540843582 + t*(-2.16538530441790295 + t*( 7.61268271084419007 + t*(-30.5564625476940407 + t*( 137.886037246469359 + t*(-690.997073019238491 + t*( 3807.68178778309543 + t*(-22882.7030515811024 + t*(148941.879683951997 + t*(-1.0438343401183636e6 )))) )))) )))) ))) ; return exp(-z)*q*s;}
z_type besselk09(z_type z){ DB x=Re(z)+3.8, y=Im(z); if( x*x+y*y < 13*13 ) return besselk0o(z); return besselk0O(z); }
C++ generator of curves
// File besselk09.cin above and conto.cin and ado.cin should be stored in the working directory in order to compile the C++ code below.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin" #include "besselk09.cin" main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; int M=401,M1=M+1; int N=401,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("besselk0map.eps","w");ado(o,162,162); fprintf(o,"81 81 translate\n 10 10 scale\n"); DO(n,200)Y[n]=-8.+.04*n; Y[200]=-.006; Y[201]= .006; for(n=202;n<N1;n++) Y[n]=-8.+.04*(n-1); DO(m,M1)X[m]=Y[m]; // DO(m,M1)X[m]=-4.+.04*(m-.5); for(m=-8;m<9;m++){if(m==0){M(m,-8.1)L(m,8.1)} else{M(m,-8)L(m,8)}} for(n=-8;n<9;n++){ M( -8,n)L(8,n)} fprintf(o,".01 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); c= besselk09(z); // c= besselk0O(z); // d= besselk0o(z); // p=abs((c-d)/(c+d)); p=-log(p)/log(10.); p=Re(c); q=Im(c); if(p>-43. && p<43. && q>-43. && q<43. ) {g[m*N1+n]=p; f[m*N1+n]=q; } }} //fprintf(o,"-3.8 0 13 0 360 arc C 1 .8 1 RGB .5 W S\n"); // #include "plodi.cin" // #include "plofu.cin" fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.5;q=1.2; for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n"); for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n"); for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n"); for(m=1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".03 W .9 0 0 RGB S\n"); for(m=1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".03 W 0 0 .9 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".03 W .6 0 .6 RGB S\n"); for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".03 W 0 0 0 RGB S\n"); M(0,0)L(-8,0) fprintf(o,"0 setlinecap 1 1 1 RGB .02 W S\n"); DO(m,32){ M(-.25*(m+.25),0)L(-.25*(m+.75),0) fprintf(o,"0 0 0 RGB .035 W S\n"); } fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf besselk0map.eps"); system( "open besselk0map.pdf"); getchar(); system("killall Preview");//for mac }
Latex generator of labels
% File besselk0map.pdf should be generated with the C++ code above in order to compile the Latex document below:
\documentclass[12pt]{article} % <br> \usepackage{geometry} % <br> \usepackage{graphicx} % <br> \usepackage{rotating} % <br> \usepackage{hyperref} % <br> \paperwidth 170pt % <br> \paperheight 169pt % <br> \textwidth 180pt % <br> \textheight 180pt % <br> \topmargin -108pt % <br> \oddsidemargin -72pt % <br> \parindent 0pt % <br> \begin {document} % <br> \newcommand \sx {\scalebox} % <br> \newcommand \rme {{e}} % <br> \newcommand \rmi {{\rm i}} %imaginary unity is always roman font % <br> \newcommand \ds {\displaystyle} % <br> \newcommand \bN {\mathbb{N}} % <br> \newcommand \bC {\mathbb{C}} % <br> \newcommand \bR {\mathbb{R}} % <br> \newcommand \cO {\mathcal{O}} % <br> \newcommand \cF {\mathcal{F}} % <br> \newcommand \rot {\begin{rotate}} % <br> \newcommand \ero {\end{rotate}} % <br> \newcommand \nS {\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} % <br> \newcommand \pS {{~}~{~}} % <br> \newcommand \fac {\mathrm{Factorial}} % <br> \begin{picture}(166,166) %<br> \put(8,5){\includegraphics{besselk0map.pdf}} % %<br> \put( 3,163){\sx{.8}{$y$}} %<br> \put( 3,143){\sx{.8}{$6$}} %<br> \put( 3,123){\sx{.8}{$4$}} %<br> \put( 3,103){\sx{.8}{$2$}} %<br> \put( 3,83){\sx{.8}{$0$}} %<br> \put(-3,63){\sx{.8}{$-2$}} %<br> \put(-3,43){\sx{.8}{$-4$}} %<br> \put(-3,23){\sx{.8}{$-6$}} %<br> \put(23,-1){\sx{.75}{$-6$}} %<br> \put(43,-1){\sx{.75}{$-4$}} %<br> \put(63,-1){\sx{.75}{$-2$}} %<br> \put(87.4,-1){\sx{.75}{$0$}} %<br> \put(107.4,-1){\sx{.75}{$2$}} %<br> \put(127.4,-1){\sx{.75}{$4$}} %<br> \put(147.4,-1){\sx{.75}{$6$}} %<br> \put(164.6,-.5){\sx{.8}{$x$}} %<br> \put(12,83.5){\bf cut} %<br> \put(142,157.8){$u\!=\!0$} %<br> \put(142,143.0){$v\!=\!0$} %<br> \put(142,127.7){$u\!=\!0$} %<br> \put(142,113.0){$v\!=\!0$} %<br> \put(142,98.0){$u\!=\!0$} %<br> \put(142,83.5){$v\!=\!0$} %central %<br> \put(142,68.0){$u\!=\!0$} %<br> \put(142,54.0){$v\!=\!0$} %<br> \put(142,39.0){$u\!=\!0$} %<br> \put(142,24.0){$v\!=\!0$} %<br> \put(142,9.0){$u\!=\!0$} %<br> % %<br> \put(102.6,93){\sx{.6}{$v\!=\!-0.2$}} %<br> \put(104,87){\sx{.6}{$u\!=\!0.2$}} %<br> \put(103,77){\sx{.6}{$v\!=\!0.2$}} %<br> \put(101.6,61){\sx{.6}{$u\!=\!-0.2$}} %<br> \put(99.4,48){\sx{.6}{$v\!=\!-0.2$}} %<br> \end{picture} % %<br> \end{document} %
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 2,118 × 2,105 (1.62 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: