Difference between revisions of "File:QfacMapT500a.jpg"
([[Complex map of function square root of factorial, or $\sqrt{!}$, or halfiteration of factorial $h=\mathrm{Factorial}^{1/2}$ is such function that $ h(h(z)) = z!$ in wide range of values of $z$. Levels $u=\Re(h(z))=\rm const$ and Leve...) |
|||
Line 9: | Line 9: | ||
==C++ generator of curves== |
==C++ generator of curves== |
||
+ | <poem> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "fac.cin" |
||
+ | #include "facp.cin" |
||
+ | #include "afacc.cin" |
||
+ | #include "superfac.cin" |
||
+ | #include "arcsuperfac.cin" |
||
+ | //#include "superex.cin" |
||
+ | //#include "superlo.cin" |
||
+ | DB xL=0.31813150520476413; |
||
+ | DB yL=1.3372357014306895; |
||
+ | |||
+ | #include "conto.cin" |
||
+ | |||
+ | int main(){ int j,k,m,n,n1; DB x,y, p,q, t; z_type z,c,d; |
||
+ | int M=400,M1=M+1; |
||
+ | int N=401,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("qfacMap.eps","w");ado(o,402,402); |
||
+ | fprintf(o,"201 201 translate\n 20 20 scale\n"); |
||
+ | DO(m,M1) X[m]=-8.+.04*m; |
||
+ | DO(n,N1){ y=-8.+.04*n; if(y<-.011) Y[n]=y; else break;} |
||
+ | Y[n]= -.01; n++; |
||
+ | Y[n]= +.01; n++; |
||
+ | for(j=n;j<N1;j++){y=-8.+.04*(j-1); Y[j]=y;} |
||
+ | for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} |
||
+ | for(n=-8;n<9;n++){ M( -8,n)L(8,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; printf("%5.2f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | // c=afacc(z); |
||
+ | // c=fac(c); |
||
+ | c=arcsuperfac(z); |
||
+ | c=superfac(.5+c); |
||
+ | // c=FSLOG(z); |
||
+ | // c=FSEXP(.5+c); |
||
+ | // d=z; |
||
+ | // p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.; |
||
+ | p=Re(c);q=Im(c); |
||
+ | if(p>-999 && p<999) g[m*N1+n]=p; |
||
+ | if(q>-999 && q<999 && fabs(q)> 1.e-14) f[m*N1+n]=q; |
||
+ | }} |
||
+ | fprintf(o,"1 setlinejoin 1 setlinecap\n"); //p=6.;q=6.; |
||
+ | //#include"plofu.cin" |
||
+ | p=1;q=.5; |
||
+ | for(m=-2;m<2;m++) for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M-20,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n"); |
||
+ | for(m= 0;m<2;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M-20,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n"); |
||
+ | for(m= 0;m<2;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M-20,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n"); |
||
+ | for(m=1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".04 W .9 0 0 RGB S\n"); |
||
+ | for(m=1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 .9 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".04 W .6 0 .6 RGB S\n"); |
||
+ | for(m=-4;m<5;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n"); |
||
+ | fprintf(o,"0 setlinejoin 0 setlinecap\n"); |
||
+ | x=.85; |
||
+ | M(x,0)L(-8.1,0) fprintf(o,".07 W 1 1 1 RGB S\n"); |
||
+ | DO(m,22){ M(x-.4*m,0) L(x-.4*(m+.5),0) } fprintf(o,".1 W 0 0 0 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf qfacMap.eps"); |
||
+ | system( "open qfacMap.pdf"); // for mac |
||
+ | // getchar(); system("killall Preview"); //for macintosh |
||
+ | //return 0; |
||
+ | } |
||
+ | </poem> |
||
==Latex generator of labels== |
==Latex generator of labels== |
Revision as of 16:36, 11 July 2013
[[Complex map of function square root of factorial, or $\sqrt{!}$, or halfiteration of factorial
$h=\mathrm{Factorial}^{1/2}$
is such function that $ h(h(z)) = z!$ in wide range of values of $z$.
Levels $u=\Re(h(z))=\rm const$ and Levels $u=\Im(h(z))=\rm const$ are shown in the plane $z=x+\mathrm i y$.
C++ generator of curves
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
using namespace std;
#include <complex>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "fac.cin"
#include "facp.cin"
#include "afacc.cin"
#include "superfac.cin"
#include "arcsuperfac.cin"
//#include "superex.cin"
//#include "superlo.cin"
DB xL=0.31813150520476413;
DB yL=1.3372357014306895;
#include "conto.cin"
int main(){ int j,k,m,n,n1; DB x,y, p,q, t; z_type z,c,d;
int M=400,M1=M+1;
int N=401,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("qfacMap.eps","w");ado(o,402,402);
fprintf(o,"201 201 translate\n 20 20 scale\n");
DO(m,M1) X[m]=-8.+.04*m;
DO(n,N1){ y=-8.+.04*n; if(y<-.011) Y[n]=y; else break;}
Y[n]= -.01; n++;
Y[n]= +.01; n++;
for(j=n;j<N1;j++){y=-8.+.04*(j-1); Y[j]=y;}
for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}}
for(n=-8;n<9;n++){ M( -8,n)L(8,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=afacc(z);
// c=fac(c);
c=arcsuperfac(z);
c=superfac(.5+c);
// c=FSLOG(z);
// c=FSEXP(.5+c);
// d=z;
// p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.;
p=Re(c);q=Im(c);
if(p>-999 && p<999) g[m*N1+n]=p;
if(q>-999 && q<999 && fabs(q)> 1.e-14) f[m*N1+n]=q;
}}
fprintf(o,"1 setlinejoin 1 setlinecap\n"); //p=6.;q=6.;
//#include"plofu.cin"
p=1;q=.5;
for(m=-2;m<2;m++) for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M-20,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n");
for(m= 0;m<2;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M-20,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m= 0;m<2;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M-20,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".04 W .9 0 0 RGB S\n");
for(m=1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".04 W .6 0 .6 RGB S\n");
for(m=-4;m<5;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n");
fprintf(o,"0 setlinejoin 0 setlinecap\n");
x=.85;
M(x,0)L(-8.1,0) fprintf(o,".07 W 1 1 1 RGB S\n");
DO(m,22){ M(x-.4*m,0) L(x-.4*(m+.5),0) } fprintf(o,".1 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf qfacMap.eps");
system( "open qfacMap.pdf"); // for mac
// getchar(); system("killall Preview"); //for macintosh
//return 0;
}
Latex generator of labels
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 15:36, 11 July 2013 | 2,352 × 2,352 (1.99 MB) | T (talk | contribs) | [[Complex map of function square root of factorial, or $\sqrt{!}$, or halfiteration of factorial $h=\mathrm{Factorial}^{1/2}$ is such function that $ h(h(z)) = z!$ in wide range of values of $z$. Levels $u=\Re(h(z))=\rm const$ and Leve... |
You cannot overwrite this file.
File usage
The following page uses this file: