Difference between revisions of "File:Fracit20t150.jpg"

From TORI
Jump to navigation Jump to search
(C++)
Line 11: Line 11:
   
 
==Generator of curves==
 
==Generator of curves==
  +
// File [[ado.cin]] should be loaded to the working directory in order to compile the [[C++]] code below.
  +
 
//<poem><nomathjax><nowiki>
 
//<poem><nomathjax><nowiki>
 
#include<stdio.h>
 
#include<stdio.h>

Revision as of 21:10, 4 August 2013

Iterate of linear fraction;

$\displaystyle f(z)=\frac{x}{c+z}$ at $c\!=\!2$.

In general the $n$th iterate of $f$ can be expressed as follows:

$\displaystyle f^n(z)=\frac{z}{c^n+\frac{1-c^n}{1-c} z}$

$y=f^n(x)$ is plotted versus $x$ for various values of $n$.

Generator of curves

// File ado.cin should be loaded to the working directory in order to compile the C++ code below.

//


#include<stdio.h>
#include<stdlib.h>
#define DO(x,y) for(x=0;x<y;x++)
#define DB double
#include"ado.cin"
DB c=2.;
//DB F(DB n,DB x){ DB cn=pow(c,n); DB r=(1.-cn)/(1.-c); return x/( cn + r*x); }
DB F(DB n,DB x){ if(c==1.) return x/(1.+n*x); DB cn=pow(c,n); DB r=(1.-cn)/(1.-c); return x/( cn + r*x); }

main(){ FILE *o; int m,n,k; DB x,y,t;
o=fopen("fracit20.eps","w");
ado(o,702,702);
#define M(x,y) fprintf(o,"%7.4f %7.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%7.4f %7.4f L\n",0.+x,0.+y);
fprintf(o,"101 101 translate 100 100 scale 2 setlinecap\n");
for(n=-1;n<7;n++) { M(-1,n)L(6,n)}
for(m=-1;m<7;m++) { M(m,-1)L(m,6)}
fprintf(o,".01 W S\n");
n=0;DO(m,1401){x=-1.+.005*(m-.5);y=F(-4.,x);if(y>-10.4&&y<10.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,1401){x=-1.+.005*(m-.5);y=F(-3.,x);if(y>-8.4&&y<8.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,1401){x=-1.+.005*(m-.5);y=F(-2.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,1401){x=-1.+.005*(m-.5);y=F(-1.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 1 0 1 RGB S\n");
n=0;DO(m,1401){x=-1.+.005*(m-.5);y=F( 1.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
n=0;DO(m,1401){x=-1.+.005*(m-.5);y=F( 2.,x);if(y>-7.4&&y<7.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
n=0;DO(m,1401){x=-1.+.005*(m-.5);y=F( 3.,x);if(y>-8.4&&y<8.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
n=0;DO(m,1401){x=-1.+.005*(m-.5);y=F( 4.,x);if(y>-10.4&&y<10.4){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".03 W 0 1 0 RGB S\n");
DO(k,41){ t=-2.+.1*k;
n=0;DO(m,1401){x=-1.+.005*(m-.5);y=F(t,x);if(y>-7.2&&y<7.2){ if(n==0){M(x,y) n=1;}else L(x,y)} else n=0;} fprintf(o,".01 W 0 0 0 RGB S\n");
}
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o);
system("epstopdf fracit20.eps");
system( "open fracit20.pdf");
}
//

Latex generator of labels

References

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current20:59, 4 August 2013Thumbnail for version as of 20:59, 4 August 20131,466 × 1,466 (463 KB)T (talk | contribs)Iterate of the linear fraction function $\displaystyle f(z)=\frac{x}{c+z}$ at $c\!=\!2$. In general the $n$th iterate of $f$ can be expressed as follows: $\displaystyle f^n(z)=\frac{z}{c^n+\frac{1-c^n}{1-c} z}$ $y=f^n(x)$ is plotted versus $x$...

The following page uses this file:

Metadata