File:ShokaMapT.png
Original file (1,773 × 1,752 pixels, file size: 992 KB, MIME type: image/png)
Complex map of the Shoka function, $\mathrm{Shoka}(z)=z-\ln\!\Big( \mathrm e^{-z} +\mathrm e -1 \Big)$ :
$u\!+\! \mathrm i v = \mathrm{Shoka}(x\!+\! \mathrm i y)$
In the cental part, id est, $ |y|<\pi$, the map coincides with that of the Shoko function, $\mathrm{Shoko}(z)=\ln\!\Big(1+ \mathrm e^z (\mathrm e \!-\! 1) \Big)$
C++ generator of curves
Files ado.cin and conto.cin should be loaded in the working directory in order to compile the C++ code below:
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin"
// z_type Shoko(z_type z) { return log(1.+exp(z)*(M_E-1.)); } z_type Shoka(z_type z) { return z + log(exp(-z)+(M_E-1.)); }
main(){ int j,k,m,n; DB x,y, p,q, t,r; z_type z,c,d; r=log(1./(M_E-1.)); printf("r=%16.14f\n",r); int M=400,M1=M+1; int N=800,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("ShokaMap.eps","w");ado(o,162,162); fprintf(o,"81 81 translate\n 10 10 scale\n"); DO(m,M1){ t=(m-200)/200.; X[m]=4.005*t*(1.+t*t);} DO(n,N1)Y[n]=-8.+.02*n; for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} for(n=-8;n<9;n++){ M( -8,n)L(8,n)} fprintf(o,".008 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); // c=Tania(z); p=Re(c);q=Im(c); c=Shoka(z); p=Re(c);q=Im(c); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} }} fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=.8;q=.5; for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".05 W .9 0 0 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 .9 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".05 W .6 0 .6 RGB S\n"); for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 0 RGB S\n"); y= M_PI; M(r,y)L(-8.1,y) y=-M_PI; M(r,y)L(-8.1,y) fprintf(o,"0 setlinecap .04 W 1 1 1 RGB S\n"); y= M_PI; for(m=0;m<75;m+=4) {x=r-.1*m; M(x,y) L(x-.12,y)} y=-M_PI; for(m=0;m<75;m+=4) {x=r-.1*m; M(x,y) L(x-.12,y)} fprintf(o,".06 W 1 .5 0 RGB S\n"); y= M_PI; for(m=2;m<75;m+=4) {x=r-.1*m; M(x,y) L(x-.12,y)} y=-M_PI; for(m=2;m<75;m+=4) {x=r-.1*m; M(x,y) L(x-.12,y)} fprintf(o,".06 W 0 .5 1 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf ShokaMap.eps"); system( "open ShokaMap.pdf"); printf("r=%16.14f %16.14f\n",r,sqrt(M_PI*M_PI+r*r)); getchar(); system("killall Preview"); }
Latex generator of labels
% file ShokaMap.pdf should be generated with the code above in order to compile the Latex document below.
%
% Gerenator of ShokaMap.png %<br>
% Copyleft 2012 by Dmitrii Kouznetsov %<br>
\documentclass[12pt]{article} %<br>
\usepackage{geometry} %<br>
\usepackage{graphicx} %<br>
\usepackage{rotating} %<br>
\paperwidth 854pt %<br>
\paperheight 844pt %<br>
\topmargin -96pt %<br>
\oddsidemargin -98pt %<br>
\textwidth 1100pt %<br>
\textheight 1100pt %<br>
\pagestyle {empty} %<br>
\newcommand \sx {\scalebox} %<br>
\newcommand \rot {\begin{rotate}} %<br>
\newcommand \ero {\end{rotate}} %<br>
\newcommand \ing {\includegraphics} %<br>
\begin{document} %<br>
\sx{5}{ \begin{picture}(164,165) %<br>
\put(6,5){\ing{ShokaMap}} %<br>
\put(2,163){\sx{.7}{$y$}} %<br>
\put(2,144){\sx{.6}{$6$}} %<br>
\put(2,124){\sx{.6}{$4$}} %<br>
\put(2,104){\sx{.6}{$2$}} %<br>
\put(3,116){\sx{.6}{$\pi$}} %<br>
\put(18,161.4){\sx{.8}{$u\!=\!0$}} %<br>
\put(11,150){\sx{.8}{$v\!\approx\!2\pi$}} %<br>
\put(18,131.2){\sx{.8}{$u\!=\!0$}} %<br>
\put(18,115.6){\sx{.8}{\bf cut}} %<br>
%\put(120,116.7){\sx{.4}{\bf cut}} %<br>
\put(18,100){\sx{.8}{$u\!=\!0$}} %<br>
\put(2, 84){\sx{.6}{$0$}} %<br>
\put(18, 84){\sx{.8}{$v\!=\!0$}} %<br>
\put(18,68){\sx{.8}{$u\!=\!0$}} %<br>
\put(-2,64){\sx{.6}{$-2$}} %<br>
\put(-2,53){\sx{.6}{$-\pi$}} %<br>
\put(18,52.4){\sx{.8}{\bf cut}} %<br>
\put(18,36.5){\sx{.8}{$u\!=\!0$}} %<br>
\put(11,20.4){\sx{.8}{$v\!\approx\! -\!2\pi$}} %<br>
\put(18,7){\sx{.8}{$u\!=\!0$}} %<br>
\put(-2,44){\sx{.6}{$-4$}} %<br>
\put(-2,24){\sx{.6}{$-6$}} %<br>
\put( 22,0){\sx{.6}{$-6$}} %<br>
\put( 42,0){\sx{.6}{$-4$}} %<br>
\put( 62,0){\sx{.6}{$-2$}} %<br>
\put( 86,0){\sx{.6}{$0$}} %<br>
\put(106,0){\sx{.6}{$2$}} %<br>
\put(126,0){\sx{.6}{$4$}} %<br>
\put(146,0){\sx{.6}{$6$}} %<br>
\put(164,0){\sx{.7}{$x$}} %<br>
\put( 89.8, 77){\rot{90}\sx{.7}{$u\!=\!1$}\ero}%<br>
\put(102.4, 77){\rot{90}\sx{.7}{$u\!=\!2$}\ero}%<br>
\put(113.4, 77){\rot{90}\sx{.7}{$u\!=\!3$}\ero}%<br>
\put(124.0, 77){\rot{90}\sx{.7}{$u\!=\!4$}\ero}%<br>
\put(132,154.4){\sx{.8}{$v\!=\!7$}}%<br>
\put(132,144.3){\sx{.8}{$v\!=\!6$}}%<br>
\put(132,134.3){\sx{.8}{$v\!=\!5$}}%<br>
\put(132,124.2){\sx{.8}{$v\!=\!4$}}%<br>
\put(132,114.2){\sx{.8}{$v\!=\!3$}}%<br>
\put(132,104.2){\sx{.8}{$v\!=\!2$}}%<br>
\put(132, 94.2){\sx{.8}{$v\!=\!1$}}%<br>
\put(132, 84){\sx{.8}{$v\!=\!0$}}%<br>
\put(132, 73.9){\sx{.8}{$v\!=\!-\!1$}}%<br>
\put(132, 63.4){\sx{.8}{$v\!=\!-\!2$}}%<br>
\put(132, 53.4){\sx{.8}{$v\!=\!-\!3$}}%<br>
\put(132, 43.4){\sx{.8}{$v\!=\!-\!4$}}%<br>
\put(132, 33.4){\sx{.8}{$v\!=\!-\!5$}}%<br>
\put(132, 23.4){\sx{.8}{$v\!=\!-\!6$}}%<br>
\put(132, 13.4){\sx{.8}{$v\!=\!-\!7$}}%<br>
\end{picture} %<br>
} %<br>
\end{document}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 1,773 × 1,752 (992 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: