Theorem on increment of tetration
Jump to navigation
Jump to search
Theorem on increment of superfunctionsis statement about asymptotic behavior of solution of the Transfer equation.
Let \(F\) be solution of equation
\(F(z\!+\!1)=\exp\big(\beta F(z)\big)\)
for some \(\beta>0\).
Let \(L\) be the fixed point, id est, \(\exp(\beta L)=L\)
Let \(F(z)=L+\varepsilon+O(\varepsilon^2) \)
where \(\varepsilon = \exp(kz) \) for some increment \(k\).
Let \(~ K\!=\!\exp(k)\)
Then
\( \Im(K) = \Im(k) \)