FullSimplify

From TORI
Revision as of 18:43, 30 July 2019 by T (talk | contribs) (Text replacement - "\$([^\$]+)\$" to "\\(\1\\)")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

FullSimplify is routine of the Mathmatica language. It is used to simplify expressions

The call may look as follows:

FullSimplify[\(espression\)]

or FullSimplify[\(espression\), {\(hint1\), \(hint2\),..}]

where "hints" are logical expressions that may be useful at the simplification.

Simplify

Syntax of routine FullSimplify is similar to that of routine Simplify

However, the FullSimplify does a little bit deeper search for possible simplifications of the expression, than just Simplify.

Bug

Routine FullSimplify does not seem to handle well expressions with imaginary unity , I=\Sqrt[-1] .

Here is he example Let


b = (-1 + Exp[(-2*I)*q - 2*s])*(-1 + Exp[(2*I)*q - 2*s])

c = (-1 + (q - I*s)^2)*(-1 + (q + I*s)^2)

a = b*c

U = FullSimplify[a]

The last evaluation does \( \left(-1+\mathrm{e}^{-2 s-2 i q}\right) \left(-1+\mathrm{e}^{-2 s+2 i q}\right) \left(-1+(q-i s)^2\right) \left(-1+(q+i s)^2\right) \)

instead of expected \(2 \mathrm{e}^{-2 s} \left(q^4+2 q^2 \left(s^2-1\right)+\left(s^2+1\right)^2\right) (\cosh (2 s)-\cos (2 q)) \)

Then, expression


FullSimplify[Im[U], {q>0, s>0}]

does \(\Im\left(\left(-1+e^{-2 s-2 i q}\right) \left(-1+e^{-2 s+2 i q}\right) \left(-1+(q-i s)^2\right) \left(-1+(q+i s)^2\right)\right) \)

instead of expected 0.

This can be verified with code


FullSimplify[b] FullSimplify[c]

References


https://reference.wolfram.com/language/ref/FullSimplify.html FullSimplify[expr] tries a wide range of transformations on expr involving elementary and special functions and returns the simplest form it finds.
FullSimplify[expr,assum] does simplification using assumptions.

Keywords

Bug, Mathematica, Mathematics Wolfram research,,