Kuznetsova theorem

From TORI
Revision as of 20:22, 23 January 2020 by T (talk | contribs) (→‎notations)
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Kuznetsova theorem refers to residual of division of tetration to integer base by any integer number.

Kuznetsova theorem

Let \( b>1 \) and \( q>1 \) be integers.

Then, there exist positive integer \( Q \) and integer \(r\) such that for any integer \( n > Q \) the equation holds:

\( \mathrm{tet}_b(n)\%q = r \)

Notations

Here symbol tet veters to tetraton. The base is indicated as subscript.

Character % refers to residual of division of the number at left (treated as numerator) by number at right (intepreted as denominator).

For example,
\(3 \%2=1\)
\( 14\%2=0 \)
\( 14\%10=4 \)

References

Keywords

Integer number, Tartaria, Tartaria.Math, Tetration, Yulya Kuznetsova