Theorem on increment of tetration

From TORI
Jump to navigation Jump to search

Theorem on increment of superfunctionsis statement about asymptotic behavior of solution of the Transfer equation.

Statement

Let \(F\) be solution of equation

\(F(z\!+\!1)=\exp\big(\beta F(z)\big)\)

for some \(\beta>0\).

Let \(L\) be the fixed point, id est, \(\exp(\beta L)=L\)

Let \(F(z)=L+\varepsilon+O(\varepsilon^2) \)

where \(\varepsilon = \exp(kz) \) for some increment \(k\).

Let \(~ K\!=\!\exp(k)\)

Then

\( \Im(K) = \Im(k) \)

References


Keywords

Fixed point, Kneser expansion, Superfunction, Tetration