File:QexpMapT400.jpg
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 1,881 × 1,881 pixels.
Original file (1,881 × 1,881 pixels, file size: 1.83 MB, MIME type: image/jpeg)
Complex map of function $\sqrt(\exp)= \exp^{1/2}$, Halfiteration of exponential to base $\mathrm e$.
$f=\exp^{1/2}(x+\rm i y$
is shown with lines $u=\Re(f)=\mathrm const$ and lines $v=\Im(f)=\mathrm const$.
C++ generator of curves
// FIles ado.cin and conto.cin and superexp.cin and superlo.cin should be loaded in the working directory in order to compile the code below. Actually, the last two evaluate tetration tet and arcterration ate; routines fsexp.cin and fslog.cin can be used instead.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) //#include "fac.cin" //#include "sinc.cin" //#include "facp.cin" //#include "afacc.cin" //#include "superfac.cin" #include "superex.cin" #include "superlo.cin" DB xL=0.31813150520476413; DB yL=1.3372357014306895;
#include "conto.cin"
int main(){ int j,k,m,n,n1; DB x,y, p,q, t; z_type z,c,d; int M=160,M1=M+1; int N=165,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array //FILE *o;o=fopen("fig4b.eps","w");ado(o,402,402); FILE *o;o=fopen("qexpMap.eps","w");ado(o,402,402); fprintf(o,"201 201 translate\n 20 20 scale\n"); DO(m,M1) X[m]=-8.+.1*m; DO(n,N1){ y=-8.+.1*n; if(y< -yL) Y[n]=y; else break;} Y[n]=-yL-.001; n++; Y[n]=-yL+.001; n++; for(j=n;j<N1;j++){y=-8.+.1*(j-2); if(y<-.02) Y[j]=y; else break;} Y[j]= -.02; j++; Y[j]= +.02; j++; for(k=j;k<N1;k++){y=-8.+.1*(k-3); if(y<yL) Y[k]=y; else break;} Y[k]= yL-.001; k++; Y[k]= yL+.001; k++; for(n=k;n<N1;n++){y=-8.+.1*(n-5); Y[n]=y;} for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} for(n=-8;n<9;n++){ M( -8,n)L(8,n)} fprintf(o,".008 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); // c=afacc(z); // c=fac(c); // c=arcsuperfac(z); // c=superfac(.5+c); c=FSLOG(z); c=FSEXP(.5+c); // d=z; // p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.; p=Re(c);q=Im(c); if(p>-999 && p<999) g[m*N1+n]=p; if(q>-999 && q<999 && fabs(q)> 1.e-14) f[m*N1+n]=q; }} fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=6.;q=6.; //#include"plofu.cin" //p=2;q=1; for(m=-4;m<4;m++) for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M-20,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n"); for(m= 0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M-20,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n"); for(m= 0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M-20,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n"); for(m=1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".05 W .9 0 0 RGB S\n"); for(m=1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 .9 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".05 W .6 0 .6 RGB S\n"); for(m=-8;m<9;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 0 RGB S\n"); fprintf(o,"0 setlinejoin 0 setlinecap\n"); M(xL, yL)L(-8.1, yL) M(xL,-yL)L(-8.1,-yL) fprintf(o," .06 W 1 1 1 RGB S\n"); DO(m,21){M(xL-.4*m, yL)L(xL-.4*(m+.4), yL)} DO(m,21){M(xL-.4*m,-yL)L(xL-.4*(m+.4),-yL)} fprintf(o,".1 W 0 0 0 RGB S\n"); //M(xL, yL)L(-8, yL) //M(xL,-yL)L(-8,-yL) fprintf(o,"[.2 .2]0 setdash .12 W 0 0 0 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); // system( "open fig4b.eps"); //for macintosh system("epstopdf qexpMap.eps"); system( "open qexpMap.pdf"); //for unix // system( "xpdf fig4b.pdf &"); //for unix // getchar(); system("killall Preview"); //for macintosh }
Latex generator of labels
References
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 18:03, 11 July 2013 | 1,881 × 1,881 (1.83 MB) | T (talk | contribs) | Complex map of function $\sqrt(\exp)= \exp^{1/2}$, Halfiteration of exponential to base $\mathrm e$. $f=\exp^{1/2}(x+\rm i y$ is shown with lines $u=\Re(f)=\mathrm const$ and lines $v=\Im(f)=\mathrm const$. ==References== [[Categrory:T... |
You cannot overwrite this file.
File usage
The following page uses this file: