Difference between revisions of "AdPow"

From TORI
Jump to: navigation, search
 
m (Text replacement - "\$([^\$]+)\$" to "\\(\1\\)")
 
Line 1: Line 1:
 
[[File:AuPow2Plot.jpg|360px|thumb|Fig.1.
 
[[File:AuPow2Plot.jpg|360px|thumb|Fig.1.
$y\!=\!\mathrm{AdPow}_2(x)$ and
+
\(y\!=\!\mathrm{AdPow}_2(x)\) and
$y\!=\!\mathrm{AuPow}_2(x)$ ]]
+
\(y\!=\!\mathrm{AuPow}_2(x)\) ]]
   
[[File:Adpow2map.jpg|360px|thumb|Fig.2. $u\!+\!\mathrm i v\!=\!\mathrm{AdPow}_2(x\!+\!\mathrm i y)$]]
+
[[File:Adpow2map.jpg|360px|thumb|Fig.2. \(u\!+\!\mathrm i v\!=\!\mathrm{AdPow}_2(x\!+\!\mathrm i y)\)]]
   
 
[[AdPow]] is specific [[Abelpower]] function, id est, the specific [[Abel function]] for the [[Power function]].
 
[[AdPow]] is specific [[Abelpower]] function, id est, the specific [[Abel function]] for the [[Power function]].
Line 9: Line 9:
 
[[AdPow]] can be expressed as elementary function,
 
[[AdPow]] can be expressed as elementary function,
   
$\mathrm{AdPow}_a(z)=\log_a(\ln(1/z))$
+
\(\mathrm{AdPow}_a(z)=\log_a(\ln(1/z))\)
   
Where $a$ is parameter. Usually, it is assumed that $a\!>\!0$.
+
Where \(a\) is parameter. Usually, it is assumed that \(a\!>\!0\).
   
 
[[AdPow]] is [[inverse function]] of [[SdPow]], that, in its turn, is [[superfunction]] of the [[power function]].
 
[[AdPow]] is [[inverse function]] of [[SdPow]], that, in its turn, is [[superfunction]] of the [[power function]].
Line 19: Line 19:
 
Another [[abelfunction]] for the power function is called [[AuPow]];
 
Another [[abelfunction]] for the power function is called [[AuPow]];
   
$\mathrm{AdPow}_a(z)=\log_a(\ln(z))$
+
\(\mathrm{AdPow}_a(z)=\log_a(\ln(z))\)
   
 
[[AdPow]] is related with [[AuPow]] function with simple relation:
 
[[AdPow]] is related with [[AuPow]] function with simple relation:
   
$\mathrm{AdPow}_a(z)=\mathrm{AuPow}_a(1/z)$
+
\(\mathrm{AdPow}_a(z)=\mathrm{AuPow}_a(1/z)\)
   
For $a\!=\!2$, both functions [[AdPow]] and [[AuPow]] are shown in Fig.1
+
For \(a\!=\!2\), both functions [[AdPow]] and [[AuPow]] are shown in Fig.1
   
For the same $a\!=\!2$, [[complex map]] of function [[AdPow]] is shown in Fig.2.
+
For the same \(a\!=\!2\), [[complex map]] of function [[AdPow]] is shown in Fig.2.
   
 
== [[Inverse function]] ==
 
== [[Inverse function]] ==
Line 33: Line 33:
 
For [[AdPow]], the [[inverse function]] is [[SdPow]], that is [[superpower]] function, id est, [[superfunction]] of the [[power function]]:
 
For [[AdPow]], the [[inverse function]] is [[SdPow]], that is [[superpower]] function, id est, [[superfunction]] of the [[power function]]:
   
$\mathrm{AdPow}_a=\mathrm{SdPow}_a^{-1}$
+
\(\mathrm{AdPow}_a=\mathrm{SdPow}_a^{-1}\)
   
 
[[SdPow]] satisfies the [[Transfer equation]]
 
[[SdPow]] satisfies the [[Transfer equation]]
   
$\mathrm{SdPow}_a(z\!+\!1)=\mathrm{SdPow}_a(z)^a$
+
\(\mathrm{SdPow}_a(z\!+\!1)=\mathrm{SdPow}_a(z)^a\)
   
 
[[SdPow]] is elementary function,
 
[[SdPow]] is elementary function,
   
$\mathrm{SdPow}_a(z)= \exp(-a^z)$
+
\(\mathrm{SdPow}_a(z)= \exp(-a^z)\)
   
 
==Applications==
 
==Applications==

Latest revision as of 18:43, 30 July 2019

Fig.1. \(y\!=\!\mathrm{AdPow}_2(x)\) and \(y\!=\!\mathrm{AuPow}_2(x)\)
Fig.2. \(u\!+\!\mathrm i v\!=\!\mathrm{AdPow}_2(x\!+\!\mathrm i y)\)

AdPow is specific Abelpower function, id est, the specific Abel function for the Power function.

AdPow can be expressed as elementary function,

\(\mathrm{AdPow}_a(z)=\log_a(\ln(1/z))\)

Where \(a\) is parameter. Usually, it is assumed that \(a\!>\!0\).

AdPow is inverse function of SdPow, that, in its turn, is superfunction of the power function.

AdPow and AuPow

Another abelfunction for the power function is called AuPow;

\(\mathrm{AdPow}_a(z)=\log_a(\ln(z))\)

AdPow is related with AuPow function with simple relation:

\(\mathrm{AdPow}_a(z)=\mathrm{AuPow}_a(1/z)\)

For \(a\!=\!2\), both functions AdPow and AuPow are shown in Fig.1

For the same \(a\!=\!2\), complex map of function AdPow is shown in Fig.2.

Inverse function

For AdPow, the inverse function is SdPow, that is superpower function, id est, superfunction of the power function:

\(\mathrm{AdPow}_a=\mathrm{SdPow}_a^{-1}\)

SdPow satisfies the Transfer equation

\(\mathrm{SdPow}_a(z\!+\!1)=\mathrm{SdPow}_a(z)^a\)

SdPow is elementary function,

\(\mathrm{SdPow}_a(z)= \exp(-a^z)\)

Applications

AdPow appears as example of the Abel function that can be expressed as elementary function. This allows to trace evaluation of superfunction through the regular iteration; the fixed point unity can be used for the calculation.

References


Keywords

Abel function AdPow Abel function Elementary function Power function SdPow Superfunctions SdPow Superfunctions