Difference between revisions of "User talk:Marina"

From TORI
Jump to: navigation, search
(17 intermediate revisions by the same user not shown)
Line 16: Line 16:
 
== I am using this space for temporary files - modifications for wiki ==
 
== I am using this space for temporary files - modifications for wiki ==
   
In 1968 (10 November), Lovelace discovered period <math>P\approx 33</math> ms of the [[Crab Pulsar]].<ref name = "Comella1969"/><ref name="Lovell1973">[https://ui.adsabs.harvard.edu/abs/1973ozjb.book.....L/abstract "Out of the Zenith. Jodrell Bank 1957-1970"] Sir. Bernard Lovell, 1973, London: Oxford University Press, pp 1-255 (see page159).</ref> As a graduate student working at [[Arecibo Observatory]], Lovelace developed a version of the [[Fast Fourier transform]] program <ref name="Lovelace1969">[https://ui.adsabs.harvard.edu/abs/1969Natur.222..231L/abstract "Digital Search Methods for Pulsars"] 1969, R. V. E. Lovelace, J. M. Sutton, E. E. Salpeter, ''Nature'' 222 (5190), 231-233.</ref> which
+
In 1968 (10 November), Lovelace and his collaborators discovered period <math>P\approx 33</math> ms of the [[Crab Pulsar]].<ref name=”Lovelace1968”>[https://ui.adsabs.harvard.edu/abs/1968IAUC.2113....1L/abstract “Pulsar NP 0532 Near Crab Nebula”] R. V. E. Lovelace, J. M. Sutton, and H. D. Craft 1968, November, IAU Circ., No. 2113, #1 (1968) </ref><ref name="Lovell1973">[https://ui.adsabs.harvard.edu/abs/1973ozjb.book.....L/abstract "Out of the Zenith. Jodrell Bank 1957-1970"] Sir. Bernard Lovell, 1973, London: Oxford University Press, pp 1-255 (see page159).</ref> As a graduate student working at [[Arecibo Observatory]], Lovelace developed a version of the [[Fast Fourier transform]] program <ref name="Lovelace1969">[https://ui.adsabs.harvard.edu/abs/1969Natur.222..231L/abstract "Digital Search Methods for Pulsars"] 1969, R. V. E. Lovelace, J. M. Sutton, E. E. Salpeter, ''Nature'' 222 (5190), 231-233.</ref> which
 
was adapted to run on the Arecibo Observatory's [[CDC 3000 series|CDC 3200]] computer
 
was adapted to run on the Arecibo Observatory's [[CDC 3000 series|CDC 3200]] computer
<ref name=”LovelaceTaylor2014”>[https://astro.cornell.edu/sites/people/files/CrabPeriodDiscovery1.pdf "On the Discovery of the Period of the Crab Nebula Pulsar"] R.V.E. Lovelace & G. Leonard Tyler, 2012, The Observatory, V. 132, p. 186</ref>. This program helped to separate the periodic pulsar signal from the noise, and one night he discovered the period of the [[Crab pulsar]], which is approximately 33 ms (33.09 ms).<ref name = "Comella1969">[https://ui.adsabs.harvard.edu/abs/1969Natur.221..453C/abstract "Crab nebula pulsar NP 0532"] 1969, J. M. Comella, H. D. Craft, R. V. E. Lovelace, J. M. Sutton, G. L. Tyler, ''Nature'' 221 (5179), 453-454.</ref><ref name=”Lang2013”>[https://books.google.com/books?id=Nq_1CAAAQBAJ&newbks=1&newbks_redir=0&printsec=frontcover&pg=PA1&hl=en#v=onepage&q&f=false "Astrophysical Formulae. Space, Time, Matter and Cosmology"] Kenneth R. Lang 2014, Publisher: Springer Berlin Heidelberg</ref>
+
<ref name=”LovelaceTaylor2012”>[http://articles.adsabs.harvard.edu/pdf/2012Obs...132..186L "On the Discovery of the Period of the Crab Nebula Pulsar"] R.V.E. Lovelace & G. Leonard Tyler, 2012, The Observatory, V. 132, p. 186-188</ref>. This program helped to separate the periodic pulsar signal from the noise, and one night he discovered the period of the [[Crab pulsar]], which is approximately 33 ms.
  +
<ref name = "Comella1969">[https://ui.adsabs.harvard.edu/abs/1969Natur.221..453C/abstract "Crab nebula pulsar NP 0532"] 1969, J. M. Comella, H. D. Craft, R. V. E. Lovelace, J. M. Sutton, G. L. Tyler, ''Nature'' 221 (5179), 453-454.</ref><ref name=”Lang2013”>[https://books.google.com/books?id=Nq_1CAAAQBAJ&newbks=1&newbks_redir=0&printsec=frontcover&pg=PA1&hl=en#v=onepage&q&f=false "Astrophysical Formulae. Space, Time, Matter and Cosmology"] Kenneth R. Lang 2014, Publisher: Springer Berlin Heidelberg</ref> A month earlier, observers from the [[Jodrell Bank]] Observatory reported that two pulsating sources
  +
were found near the Crab Nebula and could be coincident with it, and that both sources were sporadic, with no evident periodicities.<ref name="Howard1968">[https://ui.adsabs.harvard.edu/abs/1968IAUC.2110....2H/abstract "Pulsating radio sources near Crab Nebula"] Howard, W. E., Staelin, D. H., Reifenstein, E. C. 1968, IAU Circ., No. 2110, #2 (1968)</ref><ref name="Staelin1968">[https://ui.adsabs.harvard.edu/abs/1968Sci...162.1481S/abstract "Pulsating Radio Sources near the Crab Nebula"] Staelin, David H. and Reifenstein, Edward C., III, December 1968, Science, Volume 162, Issue 3861, pp. 1481-1483</ref>. A few days later, Lovelace and collaborators, found that only one pulsar is present (the NP 0532 Crab Pulsar), and found its period with a high precision: 33.09 ms. They also found the precise position of the pulsar in the Crab Nebula, with precision of 10'<ref name = "Comella1969"/>.
  +
   
   
   
  +
<ref name = "Comella1969"/>
 
==References==
 
==References==
 
<references/>
 
<references/>

Revision as of 10:19, 22 January 2021

Welcome!

Hello, Marina!
Welcome at TORI.
I see, you already have successfully uploaded one file.
Keep doing!
You may ask your questions here,
at File talk:Lovelace-1.jpg
at Talk:Richard Lovelace
at User talk:T
or at the "discussion" of any other page best related to your question.
Add four "tilde"s at the end; they become your signature. T (talk) 14:08, 21 December 2020 (JST) T (talk) 14:08, 21 December 2020 (JST)

I am using this space for temporary files - modifications for wiki

In 1968 (10 November), Lovelace and his collaborators discovered period \(P\approx 33\) ms of the Crab Pulsar.[1][2] As a graduate student working at Arecibo Observatory, Lovelace developed a version of the Fast Fourier transform program [3] which was adapted to run on the Arecibo Observatory's CDC 3200 computer [4]. This program helped to separate the periodic pulsar signal from the noise, and one night he discovered the period of the Crab pulsar, which is approximately 33 ms. [5][6] A month earlier, observers from the Jodrell Bank Observatory reported that two pulsating sources were found near the Crab Nebula and could be coincident with it, and that both sources were sporadic, with no evident periodicities.[7][8]. A few days later, Lovelace and collaborators, found that only one pulsar is present (the NP 0532 Crab Pulsar), and found its period with a high precision: 33.09 ms. They also found the precise position of the pulsar in the Crab Nebula, with precision of 10'[5].



[5]

References

  1. “Pulsar NP 0532 Near Crab Nebula” R. V. E. Lovelace, J. M. Sutton, and H. D. Craft 1968, November, IAU Circ., No. 2113, #1 (1968)
  2. "Out of the Zenith. Jodrell Bank 1957-1970" Sir. Bernard Lovell, 1973, London: Oxford University Press, pp 1-255 (see page159).
  3. "Digital Search Methods for Pulsars" 1969, R. V. E. Lovelace, J. M. Sutton, E. E. Salpeter, Nature 222 (5190), 231-233.
  4. "On the Discovery of the Period of the Crab Nebula Pulsar" R.V.E. Lovelace & G. Leonard Tyler, 2012, The Observatory, V. 132, p. 186-188
  5. 5.0 5.1 5.2 "Crab nebula pulsar NP 0532" 1969, J. M. Comella, H. D. Craft, R. V. E. Lovelace, J. M. Sutton, G. L. Tyler, Nature 221 (5179), 453-454.
  6. "Astrophysical Formulae. Space, Time, Matter and Cosmology" Kenneth R. Lang 2014, Publisher: Springer Berlin Heidelberg
  7. "Pulsating radio sources near Crab Nebula" Howard, W. E., Staelin, D. H., Reifenstein, E. C. 1968, IAU Circ., No. 2110, #2 (1968)
  8. "Pulsating Radio Sources near the Crab Nebula" Staelin, David H. and Reifenstein, Edward C., III, December 1968, Science, Volume 162, Issue 3861, pp. 1481-1483