Difference between revisions of "ZernikeR"

From TORI
Jump to: navigation, search
 
m (Text replacement - "\$([^\$]+)\$" to "\\(\1\\)")
 
Line 2: Line 2:
   
 
===Explicit representation===
 
===Explicit representation===
For integer value of parameter $m$ of the [[Bessel transform]], the Zernike polynomial is expressed as follows:
+
For integer value of parameter \(m\) of the [[Bessel transform]], the Zernike polynomial is expressed as follows:
: $\!\!\!\!\!\!\!\!\!\! (1) \displaystyle ~ ~ ~
+
: \(\!\!\!\!\!\!\!\!\!\! (1) \displaystyle ~ ~ ~
 
R_n(x)= \sum_{k=0}{(n-m)/2}
 
R_n(x)= \sum_{k=0}{(n-m)/2}
 
\frac{(-1)^k ~ (n-k)!}
 
\frac{(-1)^k ~ (n-k)!}
 
{k! ~ \left( \frac{n+m}{2}-k \right) ! ~ \left( \frac{n-m}{2}-k \right) ! }
 
{k! ~ \left( \frac{n+m}{2}-k \right) ! ~ \left( \frac{n-m}{2}-k \right) ! }
 
x^{n-2k}
 
x^{n-2k}
  +
\)
$
 
at least for integer values of $(n\!-\! m)/2$.
+
at least for integer values of \((n\!-\! m)/2\).
 
<ref>
 
<ref>
 
http://mathworld.wolfram.com/ZernikePolynomial.html
 
http://mathworld.wolfram.com/ZernikePolynomial.html
 
</ref>
 
</ref>
 
The Zernike polynomial is implemented in [[Mathematica]], and can be called as
 
The Zernike polynomial is implemented in [[Mathematica]], and can be called as
: $ \rm ZernikeR[n,\nu,x]$
+
: \( \rm ZernikeR[n,\nu,x]\)
where $n$ is order of the polynomial, $\nu$ is parameter of the corresponding [[Bessel transform]] and the last argument $x$ is just argument of the Zernike polynomial. However, not all versions of Mathematica support this option.
+
where \(n\) is order of the polynomial, \(\nu\) is parameter of the corresponding [[Bessel transform]] and the last argument \(x\) is just argument of the Zernike polynomial. However, not all versions of Mathematica support this option.
   
 
<!--
 
<!--
For fixed $\nu$ and $n$, the Zernike polynomial is exposed eight elementary func
+
For fixed \(\nu\) and \(n\), the Zernike polynomial is exposed eight elementary func
For integer values of $\nu$, the [[Zernike polynomial]] is indeed polynomial.
+
For integer values of \(\nu\), the [[Zernike polynomial]] is indeed polynomial.
 
!-->
 
!-->
 
==Examples==
 
==Examples==
For the principal mode ($mm=0$), the first Zernike polynomials are
+
For the principal mode (\(mm=0\)), the first Zernike polynomials are
:$ R_0(x)=1$
+
:\( R_0(x)=1\)
:$ R_2(x)=-1+2 x^2$
+
:\( R_2(x)=-1+2 x^2\)
:$ R_4(x)=1-6x^2+6x^4$
+
:\( R_4(x)=1-6x^2+6x^4\)
:$ R_6(x)=-1+12 x^2-30 x^4+20 x^6$
+
:\( R_6(x)=-1+12 x^2-30 x^4+20 x^6\)
   
 
==References==
 
==References==

Latest revision as of 18:26, 30 July 2019

ZernikeR, or Zernike polynomial is eigendunction of the Bessel transform.

Explicit representation

For integer value of parameter \(m\) of the Bessel transform, the Zernike polynomial is expressed as follows:

\(\!\!\!\!\!\!\!\!\!\! (1) \displaystyle ~ ~ ~ R_n(x)= \sum_{k=0}{(n-m)/2} \frac{(-1)^k ~ (n-k)!} {k! ~ \left( \frac{n+m}{2}-k \right) ! ~ \left( \frac{n-m}{2}-k \right) ! } x^{n-2k} \)

at least for integer values of \((n\!-\! m)/2\). [1] The Zernike polynomial is implemented in Mathematica, and can be called as

\( \rm ZernikeR[n,\nu,x]\)

where \(n\) is order of the polynomial, \(\nu\) is parameter of the corresponding Bessel transform and the last argument \(x\) is just argument of the Zernike polynomial. However, not all versions of Mathematica support this option.

Examples

For the principal mode (\(mm=0\)), the first Zernike polynomials are

\( R_0(x)=1\)
\( R_2(x)=-1+2 x^2\)
\( R_4(x)=1-6x^2+6x^4\)
\( R_6(x)=-1+12 x^2-30 x^4+20 x^6\)

References