Difference between revisions of "File:TaniaSinguMapT.png"
(Importing image file) |
|||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
| + | [[Complex map]] of the approximation of the [[Tania function]] with the truncated series of the expansion at the branch point $-2\!+\!\mathrm i$. |
||
| − | Importing image file |
||
| + | |||
| + | Function |
||
| + | : $f=-1 |
||
| + | +3t |
||
| + | -3t^2 |
||
| + | +\frac{3}{4}t^3 |
||
| + | +\frac{3}{10}t^4 |
||
| + | +\frac{9}{160}t^5 |
||
| + | - \frac{3}{70}t^6 |
||
| + | -\frac{1251}{22400} t^7 |
||
| + | -\frac{9}{280} t^8$ |
||
| + | : where $t= \sqrt{\frac{2}{9}(z+2-\mathrm{i})}$ |
||
| + | is shown in the $x\!=\!\Re(z)$, $y\!=\!\Im(z)$ plane with<br> |
||
| + | lines $u\!=\!\Re(f)=\mathrm{const}$ and |
||
| + | lines $v\!=\!\Re(f)=\mathrm{const}$. |
||
| + | |||
| + | The shaded region indicates the range, where the precision of such an approximation of the [[Tania function]] is worse than 3. |
||
| + | The precision is defined as |
||
| + | : $ \displaystyle |
||
| + | \mathrm{precision}(z)= |
||
| + | -\lg\Big( |
||
| + | \frac |
||
| + | {|f-\mathrm{Tania}(z)|} |
||
| + | {|f|+|\mathrm{Tania}(z)|} |
||
| + | \Big)$ |
||
| + | In the white spot, the approximation returns at least 3 significant figures. |
||
| + | |||
| + | ==Generators== |
||
| + | |||
| + | ==Common header for the [[C++]] codes== |
||
| + | For compilation of the [[C++]] codes below, the files |
||
| + | [[conto.cin]] and [[ado.cin]] should be loaded. Also, the header below should be included: |
||
| + | |||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | using namespace std; |
||
| + | #include <complex> |
||
| + | typedef complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "conto.cin" |
||
| + | |||
| + | z_type ArcTania(z_type z) {return z + log(z) - 1. ;} |
||
| + | z_type ArcTaniap(z_type z) {return 1. + 1./z ;} |
||
| + | |||
| + | z_type TaniaTay(z_type z) { int n; z_type s; |
||
| + | s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456. |
||
| + | //+z*(7.3/4128768.) //some reserve term |
||
| + | )))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
| + | |||
| + | z_type TaniaNega(z_type z){int n;z_type s=exp(z-exp(z)+1.); |
||
| + | DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
| + | |||
| + | z_type TaniaNeg(z_type z){int n; z_type e=exp(1.+z); |
||
| + | return e*(1.+e*(-1.+e*(1.5+e*(-3.5 )))); } |
||
| + | |||
| + | z_type TaniaBig(z_type z){ int n; |
||
| + | z_type t=1.+z; |
||
| + | z_type L=log(t); |
||
| + | z_type x=L/t; |
||
| + | z_type m=1./L; |
||
| + | z_type s = t-L + x*(1. + x*( .5-m + x*( 1./3. + m*(-1.5+m) +x*( .25 +m*(-11./6.+m*(3.-m)) |
||
| + | // +x*(.2 +m*(-25./12 +m*(35./6. +m*(-5. +m)))) //reserve term for the testing |
||
| + | )))); |
||
| + | //DO(n,2) s+=(z-ArcTania(s))/ArcTaniap(s); |
||
| + | return s ; } |
||
| + | |||
| + | z_type TaniaBig0(z_type z){int n;z_type L=log(z), s=z-L+1.; |
||
| + | s-=(1.-L)/z; return s ; |
||
| + | DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); |
||
| + | } |
||
| + | |||
| + | z_type TaniaS(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); |
||
| + | s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. //+t*(-.9/28.) |
||
| + | ))))))); |
||
| + | DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
| + | |||
| + | z_type TaniaSingu(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); |
||
| + | s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. +t*(-.9/28.) |
||
| + | )))))));} |
||
| + | |||
| + | z_type Tania(z_type z){ z_type t; |
||
| + | if( fabs(Im(z))< M_PI && Re(z)<-2.51) return TaniaNega(z); |
||
| + | if( abs(z)>7. || Re(z)>3.8 ) return TaniaBig0(z); |
||
| + | if( Im(z) > .7 ) return TaniaS(z); |
||
| + | if( Im(z) < -.7) return conj(TaniaS(conj(z))); |
||
| + | return TaniaTay(z); |
||
| + | } |
||
| + | |||
| + | |||
| + | ==[[C++]] generator of shading== |
||
| + | |||
| + | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
| + | int M=160,M1=M+1; |
||
| + | int N=161,N1=N+1; |
||
| + | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
| + | char v[M1*N1]; // v is working array |
||
| + | FILE *o;o=fopen("taniasinguD2.eps","w");ado(o,162,162); |
||
| + | fprintf(o,"81 81 translate\n 10 10 scale\n"); |
||
| + | DO(m,M1)X[m]=-8.+.1*(m); |
||
| + | DO(n,N1)Y[n]=-8.+.1*(n); |
||
| + | |||
| + | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
| + | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
| + | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
| + | c=TaniaSingu(z); |
||
| + | d=Tania(z); |
||
| + | // c=ArcTania(c); |
||
| + | p=-log( abs(c-d) / (abs(c)+abs(d)) )/log(10.) ; |
||
| + | //p=Re(c);q=Im(c); |
||
| + | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
| + | }} |
||
| + | |||
| + | M(-8.1,-8.1)L(-8.1,8.1)L(8.1,8.1)L(8.1,-8.1) |
||
| + | fprintf(o,"C 1 .9 .9 RGB F\n"); |
||
| + | |||
| + | fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=6;q=.5; |
||
| + | conto(o,g,w,v,X,Y,M,N, (3),-p,p); fprintf(o,"C 1 1 1 RGB F\n"); |
||
| + | for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} |
||
| + | for(n=-8;n<9;n++){ M( -8,n)L(8,n)} |
||
| + | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
| + | |||
| + | y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
| + | y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
| + | fprintf(o,".07 W 1 .5 0 RGB S\n"); |
||
| + | y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
| + | y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
| + | fprintf(o,".07 W 0 .5 1 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf taniasinguD2.eps"); |
||
| + | system( "open taniasinguD2.pdf"); |
||
| + | getchar(); system("killall Preview"); |
||
| + | } |
||
| + | |||
| + | |||
| + | ==[[C++]] generator of curves== |
||
| + | |||
| + | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
| + | int M=160,M1=M+1; |
||
| + | int N=161,N1=N+1; |
||
| + | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
| + | char v[M1*N1]; // v is working array |
||
| + | FILE *o;o=fopen("taniasingumap1.eps","w");ado(o,162,162); |
||
| + | fprintf(o,"81 81 translate\n 10 10 scale\n"); |
||
| + | DO(m,M1) X[m]=-8.+.1*(m); |
||
| + | DO(n,80)Y[n]=-8.+.1*n; |
||
| + | Y[80]=-.03; |
||
| + | Y[81]= .03; |
||
| + | for(n=82;n<N1;n++) Y[n]=-8.+.1*(n-1.); |
||
| + | for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} |
||
| + | for(n=-8;n<9;n++){ M( -8,n)L(8,n)} |
||
| + | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
| + | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
| + | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
| + | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
| + | c=TaniaSingu(z); p=Re(c);q=Im(c); |
||
| + | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
| + | }} |
||
| + | fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=.6;q=.5; |
||
| + | for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
| + | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n"); |
||
| + | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n"); |
||
| + | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".05 W .9 0 0 RGB S\n"); |
||
| + | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 .9 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".05 W .6 0 .6 RGB S\n"); |
||
| + | for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 0 RGB S\n"); |
||
| + | y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
| + | y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
| + | fprintf(o,".07 W 1 .5 0 RGB S\n"); |
||
| + | y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
| + | y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
| + | fprintf(o,".07 W 0 .5 1 RGB S\n"); |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf taniasingumap1.eps"); |
||
| + | system( "open taniasingumap1.pdf"); |
||
| + | getchar(); system("killall Preview"); |
||
| + | } |
||
| + | |||
| + | [[Category:Tania function]] |
||
| + | [[Category:Complex map]] |
||
| + | [[Category:Complex maps]] |
||
| + | [[Category:Approximations]] |
||
Latest revision as of 08:53, 1 December 2018
Complex map of the approximation of the Tania function with the truncated series of the expansion at the branch point $-2\!+\!\mathrm i$.
Function
- $f=-1
+3t -3t^2 +\frac{3}{4}t^3 +\frac{3}{10}t^4 +\frac{9}{160}t^5 - \frac{3}{70}t^6 -\frac{1251}{22400} t^7 -\frac{9}{280} t^8$
- where $t= \sqrt{\frac{2}{9}(z+2-\mathrm{i})}$
is shown in the $x\!=\!\Re(z)$, $y\!=\!\Im(z)$ plane with
lines $u\!=\!\Re(f)=\mathrm{const}$ and
lines $v\!=\!\Re(f)=\mathrm{const}$.
The shaded region indicates the range, where the precision of such an approximation of the Tania function is worse than 3. The precision is defined as
- $ \displaystyle
\mathrm{precision}(z)= -\lg\Big( \frac
Generators
Common header for the C++ codes
For compilation of the C++ codes below, the files conto.cin and ado.cin should be loaded. Also, the header below should be included:
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin"
z_type ArcTania(z_type z) {return z + log(z) - 1. ;}
z_type ArcTaniap(z_type z) {return 1. + 1./z ;}
z_type TaniaTay(z_type z) { int n; z_type s;
s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456.
//+z*(7.3/4128768.) //some reserve term
)))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaNega(z_type z){int n;z_type s=exp(z-exp(z)+1.);
DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaNeg(z_type z){int n; z_type e=exp(1.+z);
return e*(1.+e*(-1.+e*(1.5+e*(-3.5 )))); }
z_type TaniaBig(z_type z){ int n;
z_type t=1.+z;
z_type L=log(t);
z_type x=L/t;
z_type m=1./L;
z_type s = t-L + x*(1. + x*( .5-m + x*( 1./3. + m*(-1.5+m) +x*( .25 +m*(-11./6.+m*(3.-m))
// +x*(.2 +m*(-25./12 +m*(35./6. +m*(-5. +m)))) //reserve term for the testing
))));
//DO(n,2) s+=(z-ArcTania(s))/ArcTaniap(s);
return s ; }
z_type TaniaBig0(z_type z){int n;z_type L=log(z), s=z-L+1.;
s-=(1.-L)/z; return s ;
DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s);
}
z_type TaniaS(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t);
s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. //+t*(-.9/28.)
)))))));
DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaSingu(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t);
s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. +t*(-.9/28.)
)))))));}
z_type Tania(z_type z){ z_type t;
if( fabs(Im(z))< M_PI && Re(z)<-2.51) return TaniaNega(z);
if( abs(z)>7. || Re(z)>3.8 ) return TaniaBig0(z);
if( Im(z) > .7 ) return TaniaS(z);
if( Im(z) < -.7) return conj(TaniaS(conj(z)));
return TaniaTay(z);
}
C++ generator of shading
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=160,M1=M+1;
int N=161,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("taniasinguD2.eps","w");ado(o,162,162);
fprintf(o,"81 81 translate\n 10 10 scale\n");
DO(m,M1)X[m]=-8.+.1*(m);
DO(n,N1)Y[n]=-8.+.1*(n);
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=TaniaSingu(z);
d=Tania(z);
// c=ArcTania(c);
p=-log( abs(c-d) / (abs(c)+abs(d)) )/log(10.) ;
//p=Re(c);q=Im(c);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
}}
M(-8.1,-8.1)L(-8.1,8.1)L(8.1,8.1)L(8.1,-8.1) fprintf(o,"C 1 .9 .9 RGB F\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=6;q=.5;
conto(o,g,w,v,X,Y,M,N, (3),-p,p); fprintf(o,"C 1 1 1 RGB F\n");
for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}}
for(n=-8;n<9;n++){ M( -8,n)L(8,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
fprintf(o,".07 W 1 .5 0 RGB S\n");
y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
fprintf(o,".07 W 0 .5 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf taniasinguD2.eps");
system( "open taniasinguD2.pdf");
getchar(); system("killall Preview");
}
C++ generator of curves
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=160,M1=M+1;
int N=161,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("taniasingumap1.eps","w");ado(o,162,162);
fprintf(o,"81 81 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-8.+.1*(m);
DO(n,80)Y[n]=-8.+.1*n;
Y[80]=-.03;
Y[81]= .03;
for(n=82;n<N1;n++) Y[n]=-8.+.1*(n-1.);
for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}}
for(n=-8;n<9;n++){ M( -8,n)L(8,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=TaniaSingu(z); p=Re(c);q=Im(c);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=.6;q=.5;
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".05 W .9 0 0 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".05 W .6 0 .6 RGB S\n");
for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 0 RGB S\n");
y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
fprintf(o,".07 W 1 .5 0 RGB S\n");
y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)}
fprintf(o,".07 W 0 .5 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf taniasingumap1.eps");
system( "open taniasingumap1.pdf");
getchar(); system("killall Preview");
}
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 851 × 841 (615 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: