Difference between revisions of "File:AcosplotT.png"
(Importing image file) |
|||
| Line 1: | Line 1: | ||
| + | [[Explicit plot]] of function [[ArcCos]]. |
||
| − | Importing image file |
||
| + | : $y=\mathrm{acos}(x)$ |
||
| + | is plotted versus $x$. |
||
| + | |||
| + | ==C++ generator of curve== |
||
| + | File [[ado.cin]] should be loaded in the cuffent directory for the compilation of the [[C++]] code below: |
||
| + | |||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | using namespace std; |
||
| + | #include <complex> |
||
| + | typedef complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "ado.cin" |
||
| + | |||
| + | z_type acos(z_type z){ |
||
| + | if(Im(z)<0){if(Re(z)>=0){return I*log( z + sqrt(z*z-1.) );} |
||
| + | else{return I*log( z - sqrt(z*z-1.) );}} |
||
| + | if(Re(z)>=0){return -I*log( z + sqrt(z*z-1.) );} |
||
| + | else {return -I*log( z - sqrt(z*z-1.) );} } |
||
| + | |||
| + | #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); |
||
| + | #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); |
||
| + | #define S(x,y) fprintf(o,"S\n",); |
||
| + | |||
| + | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
| + | FILE *o;o=fopen("acosplot.eps","w");ado(o,220,330); |
||
| + | fprintf(o,"110 10 translate\n 100 100 scale\n"); |
||
| + | for(m=-1;m<2;m++){M(m,0)L(m,3)} |
||
| + | for(n=0;n<4;n++){M(-1,n)L(1,n)} |
||
| + | fprintf(o,"2 setlinecap .01 W 0 0 0 RGB S\n"); |
||
| + | DO(m,2001){ x=-1.+.001*m; z=x; y=Re(acos(z)); if(m==0)M(x,y) else L(x,y) } |
||
| + | fprintf(o,"1 setlinejoin 1 setlinecap .02 W .5 0 0 RGB S\n"); p=1.8;q=.7; |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf acosplot.eps"); |
||
| + | system( "open acosplot.pdf"); |
||
| + | getchar(); system("killall Preview");//for mac |
||
| + | } |
||
| + | |||
| + | ==Latex generator of labels== |
||
| + | |||
| + | <nowiki> |
||
| + | % Copyleft 2012 by Dmitrii Kouznetsov %<br> |
||
| + | \documentclass[12pt]{article} %<br> |
||
| + | \usepackage{geometry} %<br> |
||
| + | \usepackage{graphicx} %<br> |
||
| + | \usepackage{rotating} %<br> |
||
| + | \paperwidth 432pt %<br> |
||
| + | \paperheight 668pt %<br> |
||
| + | \topmargin -90pt %<br> |
||
| + | \oddsidemargin -80pt %<br> |
||
| + | \textwidth 900pt %<br> |
||
| + | \textheight 900pt %<br> |
||
| + | \pagestyle {empty} %<br> |
||
| + | \newcommand \sx {\scalebox} %<br> |
||
| + | \newcommand \rot {\begin{rotate}} %<br> |
||
| + | \newcommand \ero {\end{rotate}} %<br> |
||
| + | \newcommand \ing {\includegraphics} %<br> |
||
| + | \begin{document} %<br> |
||
| + | \parindent 0pt |
||
| + | \sx{2}{ \begin{picture}(220,323) %<br> |
||
| + | \put(4,6){\ing{acosplot}} %<br> |
||
| + | \put(0,323){\sx{1.8}{$y$}} %<br> |
||
| + | %\put(2,309){\sx{1.8}{$3$}} %<br> |
||
| + | \put(0,210){\sx{1.8}{$2$}} %<br> |
||
| + | \put(0,110){\sx{1.8}{$1$}} %<br> |
||
| + | \put(0, 10){\sx{1.8}{$0$}} %<br> |
||
| + | \put(1, 0){\sx{1.8}{$-\!1$}} %<br> |
||
| + | \put(110, 0){\sx{1.8}{$0$}} %<br> |
||
| + | \put(204, 0){\sx{1.9}{$x$}} %<br> |
||
| + | \put(117,180){\sx{1.6}{\rot{-45}$y\!=\!\mathrm{acos}(x)$\ero}} |
||
| + | \end{picture} %<br> |
||
| + | } %<br> |
||
| + | \end{document} |
||
| + | </nowiki> |
||
| + | |||
| + | ==Keywords== |
||
| + | [[ArcCos]], |
||
| + | [[Inverse function]], |
||
| + | [[Explicit plot]], |
||
| + | [[Elementary function]] |
||
| + | |||
| + | |||
| + | [[Category:ArcCos]], |
||
| + | [[Category:inverse function]], |
||
| + | [[Category:Explicit plot]], |
||
| + | [[Category:Elementary function]] |
||
Revision as of 09:41, 21 June 2013
Explicit plot of function ArcCos.
- $y=\mathrm{acos}(x)$
is plotted versus $x$.
C++ generator of curve
File ado.cin should be loaded in the cuffent directory for the compilation of the C++ code below:
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "ado.cin"
z_type acos(z_type z){
if(Im(z)<0){if(Re(z)>=0){return I*log( z + sqrt(z*z-1.) );}
else{return I*log( z - sqrt(z*z-1.) );}}
if(Re(z)>=0){return -I*log( z + sqrt(z*z-1.) );}
else {return -I*log( z - sqrt(z*z-1.) );} }
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); #define S(x,y) fprintf(o,"S\n",);
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("acosplot.eps","w");ado(o,220,330);
fprintf(o,"110 10 translate\n 100 100 scale\n");
for(m=-1;m<2;m++){M(m,0)L(m,3)}
for(n=0;n<4;n++){M(-1,n)L(1,n)}
fprintf(o,"2 setlinecap .01 W 0 0 0 RGB S\n");
DO(m,2001){ x=-1.+.001*m; z=x; y=Re(acos(z)); if(m==0)M(x,y) else L(x,y) }
fprintf(o,"1 setlinejoin 1 setlinecap .02 W .5 0 0 RGB S\n"); p=1.8;q=.7;
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf acosplot.eps");
system( "open acosplot.pdf");
getchar(); system("killall Preview");//for mac
}
Latex generator of labels
% Copyleft 2012 by Dmitrii Kouznetsov %<br> \documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \usepackage{graphicx} %<br> \usepackage{rotating} %<br> \paperwidth 432pt %<br> \paperheight 668pt %<br> \topmargin -90pt %<br> \oddsidemargin -80pt %<br> \textwidth 900pt %<br> \textheight 900pt %<br> \pagestyle {empty} %<br> \newcommand \sx {\scalebox} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \newcommand \ing {\includegraphics} %<br> \begin{document} %<br> \parindent 0pt \sx{2}{ \begin{picture}(220,323) %<br> \put(4,6){\ing{acosplot}} %<br> \put(0,323){\sx{1.8}{$y$}} %<br> %\put(2,309){\sx{1.8}{$3$}} %<br> \put(0,210){\sx{1.8}{$2$}} %<br> \put(0,110){\sx{1.8}{$1$}} %<br> \put(0, 10){\sx{1.8}{$0$}} %<br> \put(1, 0){\sx{1.8}{$-\!1$}} %<br> \put(110, 0){\sx{1.8}{$0$}} %<br> \put(204, 0){\sx{1.9}{$x$}} %<br> \put(117,180){\sx{1.6}{\rot{-45}$y\!=\!\mathrm{acos}(x)$\ero}} \end{picture} %<br> } %<br> \end{document}
Keywords
ArcCos, Inverse function, Explicit plot, Elementary function,,,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 897 × 1,387 (69 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: