Difference between revisions of "File:AfacmapT800.png"
(Importing image file) |
|||
| Line 1: | Line 1: | ||
| + | [[Complex map]] of [[ArcFactorial]] |
||
| − | Importing image file |
||
| + | |||
| + | ==C++ generator of curves== |
||
| + | |||
| + | ===fac.cin=== |
||
| + | // The code below should be stored as [[fac.cin]] |
||
| + | |||
| + | z_type fracti(z_type z){ z_type s; int n; DB a[17]= |
||
| + | {0.0833333333333333333, 0.0333333333333333333, .252380952380952381, .525606469002695418, |
||
| + | 1.01152306812684171, 1.51747364915328740, 2.26948897420495996, 3.00991738325939817, |
||
| + | 4.02688719234390123, 5.00276808075403005, 6.28391137081578218, 7.49591912238403393, |
||
| + | 9.04066023436772670, 10.4893036545094823, 12.2971936103862059, 13.9828769539924302, |
||
| + | 16.0535514167049355 }; |
||
| + | s=a[16]/(z+19./(z+25./(z))); for(n=15;n>=0;n--) s=a[n]/(z+s); |
||
| + | return s + log(2.*M_PI)/2. - z + (z+.5)*log(z); |
||
| + | } // logfactorial for large values of argument except vicinity of negative part of real axis) |
||
| + | |||
| + | z_type infac0(z_type z){ z_type s; int n; DB c[28]={ 1., |
||
| + | 0.57721566490153286061, -0.65587807152025388108, |
||
| + | -0.042002635034095235529, 0.16653861138229148950, |
||
| + | -0.042197734555544336748, -0.0096219715278769735621, |
||
| + | 0.0072189432466630995424, -0.0011651675918590651121, |
||
| + | -0.00021524167411495097282, 0.00012805028238811618615, |
||
| + | -0.000020134854780788238656, -0.0000012504934821426706573, |
||
| + | 0.0000011330272319816958824, -2.0563384169776071035e-7, |
||
| + | 6.1160951044814158179e-9, 5.0020076444692229301e-9, |
||
| + | -1.1812745704870201446e-9, 1.0434267116911005105e-10, |
||
| + | 7.7822634399050712540e-12, -3.6968056186422057082e-12, |
||
| + | 5.1003702874544759790e-13, -2.0583260535665067832e-14, |
||
| + | -5.3481225394230179824e-15, 1.2267786282382607902e-15, |
||
| + | -1.1812593016974587695e-16, 1.1866922547516003326e-18, |
||
| + | 1.4123806553180317816e-18}; |
||
| + | s=c[27]*z; for(n=26;n>0;n--) {s+=c[n]; s*=z;} |
||
| + | s+=c[0]; return s;} |
||
| + | |||
| + | z_type fac0(z_type z){ return 1./infac0(z);} |
||
| + | |||
| + | z_type expaun(z_type z) {int n,m; DB x,y; |
||
| + | x=Re(z);if(x<-.5) return expaun(z+1.)-log(z+1.); |
||
| + | if(x>.6) return expaun(z-1.)+log(z); |
||
| + | y=Im(z); if(fabs(y)>1.4)return expaun(z/2.)+expaun(z/2.-.5)+z*log(2.)-log(sqrt(M_PI)); |
||
| + | return -log(infac0(z)); } |
||
| + | |||
| + | z_type lof(z_type z){DB x,y; x=Re(z); y=Im(z); |
||
| + | if(fabs(y)>5. ) return fracti(z); |
||
| + | if(x>0 && x*x+y*y>25.) return fracti(z); |
||
| + | return expaun(z); } // lof(z) returns 16 digits of complex logfactorial. |
||
| + | |||
| + | z_type infac1(z_type z){return infac0(z/2.)*infac0((z-1.)/2.)*sqrt(M_PI)/exp(log(2.)*z);} |
||
| + | z_type infac2(z_type z){return infac1(z/2.)*infac1((z-1.)/2.)*sqrt(M_PI)/exp(log(2.)*z);} |
||
| + | z_type infac3(z_type z){return infac2(z/2.)*infac2((z-1.)/2.)*sqrt(M_PI)/exp(log(2.)*z);} |
||
| + | z_type inhalf(z_type z){DB x=Re(z); DB y=Im(z); DB r=x*x+y*y; |
||
| + | if(r<2.) return infac0(z); |
||
| + | if(r<5.) return infac1(z); |
||
| + | return infac2(z); } |
||
| + | |||
| + | z_type infacmi(z_type z){ if(Re(z)> 1.) return infacmi(z-1.)/z; return inhalf(z);} |
||
| + | z_type infaclu(z_type z){ if(Re(z)<-.5) return infaclu(z+1.)*(z+1.);return inhalf(z);} |
||
| + | |||
| + | z_type infac(z_type z){DB x=Re(z),y=Im(z),t=x*x+y*y; if(t<1.)return infac0(z); |
||
| + | if( fabs(y)> 5. || (x>0 && t>25) ) return exp(-fracti(z)); |
||
| + | if( x>0 ) return infacmi(z); |
||
| + | return infaclu(z);} |
||
| + | |||
| + | z_type fac(z_type z){ DB x=Re(z),y=Im(z),t=x*x+y*y; if(t<2.)return 1./infac0(z); |
||
| + | if( (x>0. && t>25.) || fabs(y)>5.) return exp(fracti(z)); |
||
| + | if(x>0) return 1./infacmi(z); |
||
| + | return 1./infaclu(z);} |
||
| + | |||
| + | ===afacc.cin=== |
||
| + | // The code below should be stored as [[afacc.cin]] |
||
| + | |||
| + | z_type afacb(z_type z){ |
||
| + | DB z0=0.461632144968362341262659542325721328468196204; |
||
| + | DB F0=-0.12148629053584960809551455717769158215135617313; |
||
| + | DB c2=.483836122723810585213722380854825370205628608; |
||
| + | DB p=0.2090973242496979633924701135209125815611056; |
||
| + | DB q=0.0565790271828431799463572817754001404669620; |
||
| + | DB A=0.0008685913050832152753870514845664790993724; |
||
| + | DB B=0.0002046727298252365296379380008904113017495; |
||
| + | z_type t=(log(z)-F0)/c2; z_type v=sqrt(t); |
||
| + | z_type u=v*(1.+v*(p+A*t)) |
||
| + | /(1.+v*(q+B*t)) + z0; return u;} |
||
| + | z_type afacc(z_type z){ z_type a,c,d; a=afacb(z); |
||
| + | d=facp(a); c=z-fac(a); a+=c/d; if(abs(c)<1.e-12) return a; |
||
| + | d=facp(a); c=z-fac(a); a+=c/d; if(abs(c)<1.e-12) return a; |
||
| + | d=facp(a); c=z-fac(a); a+=c/d; if(abs(c)<1.e-12) return a; |
||
| + | d=facp(a); c=z-fac(a); a+=c/d; if(abs(c)<1.e-12) return a; |
||
| + | d=facp(a); c=z-fac(a); a+=c/d; return a; |
||
| + | } |
||
| + | |||
| + | ===afacmap.cin=== |
||
| + | Files [[fac.cin]], [[afacc.cin]] above and [[ado.cin]] and [[conto.cin]] should be loaded in the working directory for compillation of the [[C++]] code below: |
||
| + | |||
| + | #include <math.h> |
||
| + | #include <stdio.h> |
||
| + | #include <stdlib.h> |
||
| + | #define DB double |
||
| + | #define DO(x,y) for(x=0;x<y;x++) |
||
| + | using namespace std; |
||
| + | #include <complex> |
||
| + | typedef complex<double> z_type; |
||
| + | #define Re(x) x.real() |
||
| + | #define Im(x) x.imag() |
||
| + | #define I z_type(0.,1.) |
||
| + | #include "fac.cin" |
||
| + | //#include "sinc.cin" |
||
| + | #include "facp.cin" |
||
| + | #include "afacc.cin" |
||
| + | //#include "superfac.cin" |
||
| + | #include "conto.cin" |
||
| + | |||
| + | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
| + | int M=400,M1=M+1; |
||
| + | int N=401,N1=N+1; |
||
| + | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
| + | char v[M1*N1]; // v is working array |
||
| + | // FILE *o;o=fopen("fig2b.eps","w");ado(o,402,402); |
||
| + | FILE *o;o=fopen("afacmap.eps","w");ado(o,402,402); |
||
| + | fprintf(o,"201 201 translate\n 20 20 scale\n"); |
||
| + | DO(m,M1) X[m]=-8.+.04*(m); |
||
| + | DO(n,200)Y[n]=-8.+.04*n; |
||
| + | Y[200]=-.01; |
||
| + | Y[201]= .01; |
||
| + | for(n=202;n<N1;n++) Y[n]=-8.+.04*(n-1.); |
||
| + | for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} |
||
| + | for(n=-8;n<9;n++){ M( -8,n)L(8,n)} |
||
| + | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
| + | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
| + | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
| + | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
| + | c=afacc(z); |
||
| + | // c=fac(z); |
||
| + | // c=superfac(z); |
||
| + | // p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.; |
||
| + | p=Re(c);q=Im(c); |
||
| + | if(p>-6.9 && p<6.9 && |
||
| + | // (fabs(y)>.034 ||x>-.9 ||fabs(x-int(x))>1.e-3) && |
||
| + | q>-6.9 && q<6.9 //&& fabs(q)> 1.e-19 |
||
| + | ) |
||
| + | {g[m*N1+n]=p;f[m*N1+n]=q;} |
||
| + | }} |
||
| + | //fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.8;q=.7; |
||
| + | fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=.4;q=.4; |
||
| + | for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".025 W 0 .6 0 RGB S\n"); |
||
| + | for(m=0;m<2;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".025 W .9 0 0 RGB S\n"); |
||
| + | for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".025 W 0 0 .9 RGB S\n"); |
||
| + | for(m=1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".07 W .9 0 0 RGB S\n"); |
||
| + | for(m=1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".07 W 0 0 .9 RGB S\n"); |
||
| + | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".07 W .6 0 .6 RGB S\n"); |
||
| + | for(m=-4;m<7;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".07 W 0 0 0 RGB S\n"); |
||
| + | //#include"plofu.cin" |
||
| + | x=0.8856031944; |
||
| + | M(x,-8)L(x,8) fprintf(o,"0 setlinejoin 0 setlinecap 0.004 W 0 0 0 RGB S\n"); |
||
| + | M(x,0)L(-8.1,0) fprintf(o," .05 W 1 1 1 RGB S\n"); |
||
| + | DO(m,23){ M(x-.4*m,0)L(x-.4*(m+.5),0);} fprintf(o,".09 W .3 .3 0 RGB S\n"); |
||
| + | //M(x,0)L(-8.1,0) fprintf(o,"[.19 .21]0 setdash .05 W 0 0 0 RGB S\n"); |
||
| + | // May it be, that, some printers do not interpret well the dashing ? |
||
| + | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
| + | system("epstopdf afacmap.eps"); |
||
| + | system( "open afacmap.pdf"); //for LINUX |
||
| + | // getchar(); system("killall Preview");//for mac |
||
| + | } |
||
| + | |||
| + | ==Latex generator of labels== |
||
| + | |||
| + | % File [[afacmap.pdf]] should be generated with the code above in order to compile the [[Latex]] document below: |
||
| + | |||
| + | %<nowiki> %<br> |
||
| + | \documentclass[12pt]{article} %<br> |
||
| + | \usepackage{geometry} %<br> |
||
| + | \usepackage{graphicx} %<br> |
||
| + | \usepackage{rotating} %<br> |
||
| + | \usepackage{hyperref} %<br> |
||
| + | \paperwidth 339px %<br> |
||
| + | \paperheight 336px %<br> |
||
| + | \textwidth 165mm %<br> |
||
| + | \textheight 240mm %<br> |
||
| + | \topmargin -96pt %<br> |
||
| + | \oddsidemargin -76pt %<br> |
||
| + | \parindent 0pt %<br> |
||
| + | \begin {document} %<br> |
||
| + | \newcommand \sx {\scalebox} %<br> |
||
| + | \newcommand \rme {{e}} %<br> |
||
| + | \newcommand \rmi {{\rm i}} %imaginary unity is always roman font %<br> |
||
| + | \newcommand \ds {\displaystyle} %<br> |
||
| + | \newcommand \bN {\mathbb{N}} %<br> |
||
| + | \newcommand \bC {\mathbb{C}} %<br> |
||
| + | \newcommand \bR {\mathbb{R}} %<br> |
||
| + | \newcommand \cO {\mathcal{O}} %<br> |
||
| + | \newcommand \cF {\mathcal{F}} %<br> |
||
| + | \newcommand \rot {\begin{rotate}} %<br> |
||
| + | \newcommand \ero {\end{rotate}} %<br> |
||
| + | \newcommand \nS {\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} %<br> |
||
| + | \newcommand \pS {{~}~{~}} %<br> |
||
| + | \newcommand \fac {\mathrm{Factorial}} %<br> |
||
| + | \newcommand \ax { %<br> |
||
| + | \put( 10,342){\sx{1.4}{$y$}} %<br> |
||
| + | \put( 10,307){\sx{1.3}{$6$}} %<br> |
||
| + | \put( 10,267){\sx{1.3}{$4$}} %<br> |
||
| + | \put( 10,227){\sx{1.3}{$2$}} %<br> |
||
| + | \put( 10,187){\sx{1.3}{$0$}} %<br> |
||
| + | \put( 0,147){\sx{1.3}{$-2$}} %<br> |
||
| + | \put( 0,107){\sx{1.3}{$-4$}} %<br> |
||
| + | \put( 0, 67){\sx{1.3}{$-6$}} %<br> |
||
| + | \put( 0, 27){\sx{1.3}{$-8$}} %<br> |
||
| + | \put( 50, 18){\sx{1.3}{$-6$}} %<br> |
||
| + | \put( 90, 18){\sx{1.3}{$-4$}} %<br> |
||
| + | \put(130, 18){\sx{1.3}{$-2$}} %<br> |
||
| + | \put(178, 18){\sx{1.3}{$0$}} %<br> |
||
| + | \put(218, 18){\sx{1.3}{$2$}} %<br> |
||
| + | \put(258, 18){\sx{1.3}{$4$}} %<br> |
||
| + | \put(298, 18){\sx{1.3}{$6$}} %<br> |
||
| + | \put(334, 19){\sx{1.4}{$x$}} %<br> |
||
| + | } %<br> |
||
| + | \begin{picture}(340,340) \ax %<br> |
||
| + | \put(-20,-10){\includegraphics{afacmap}} %<br> |
||
| + | \put(158,348){\rot{-73}\sx{1.5}{$q\!=\!1.2$}\ero} %<br> |
||
| + | \put(102,346){\rot{-51}\sx{1.5}{$q\!=\!1.4$}\ero} %<br> |
||
| + | \put( 61,313){\rot{-34}\sx{1.5}{$q\!=\!1.6$}\ero} %<br> |
||
| + | \put( 38,268){\rot{-16}\sx{1.5}{$q\!=\!1.8$}\ero} %<br> |
||
| + | \put( 32,236){\rot{ -2}\sx{1.5}{$q\!=\!2$}\ero} %<br> |
||
| + | \put( 32,188){\sx{1.8}{\bf cut}} %<br> |
||
| + | \put( 33,152){\sx{1.5}{$q\!=\!-2$}} %<br> |
||
| + | \put( 36,106){\rot{15}\sx{1.5}{$q\!=\!-1.8$}\ero} %<br> |
||
| + | \put( 64, 60){\rot{35}\sx{1.5}{$q\!=\!-1.6$}\ero} %<br> |
||
| + | \put(112, 33){\rot{53}\sx{1.5}{$q\!=\!-1.4$}\ero} %<br> |
||
| + | \put(166, 27){\rot{74}\sx{1.5}{$q\!=\!-1.2$}\ero} %<br> |
||
| + | % %<br> |
||
| + | \put(225,308){\rot{82}\sx{1.5}{$q\!=\!1$}\ero} %<br> |
||
| + | \put(219, 83){\rot{-87}\sx{1.5}{$q\!=\!-1$}\ero} %<br> |
||
| + | \put(244, 89){\rot{-68}\sx{1.5}{$q\!=\!-0.8$}\ero} %<br> |
||
| + | \put(253,293){\rot{62}\sx{1.5}{$q\!=\!0.8$}\ero} %<br> |
||
| + | \put(280,276){\rot{45}\sx{1.5}{$q\!=\!0.6$}\ero} %<br> |
||
| + | \put(300,250){\rot{30}\sx{1.5}{$q\!=\!0.4$}\ero} %<br> |
||
| + | \put(298,226){\rot{15}\sx{1.5}{$q\!=\!0.2$}\ero} %<br> |
||
| + | \put(304,187){\sx{1.6}{$q$=0}} %<br> |
||
| + | %\put(300,162){\rot{-15}\sx{1.5}{$q\!=\!-0.2$}\ero} %<br> |
||
| + | \put(264,132){\rot{54}\sx{1.5}{$p$=2.8}\ero} %<br> |
||
| + | \put(280,110){\rot{50}\sx{1.5}{$p$=3}\ero} %<br> |
||
| + | \put(290, 70){\rot{44}\sx{1.5}{$p$=3.2}\ero} %<br> |
||
| + | \put(300, 42){\rot{39}\sx{1.5}{$p$=3.4}\ero} %<br> |
||
| + | \end{picture} %<br> |
||
| + | \end{document} %<br> |
||
| + | %</nowiki> |
||
| + | |||
| + | [[Category:ArcFactorial]] |
||
| + | [[Category:Complex map]] |
||
| + | [[Category:Inverse function]] |
||
| + | [[Category:C++]] |
||
| + | [[Category:Latex]] |
||
Revision as of 09:41, 21 June 2013
C++ generator of curves
fac.cin
// The code below should be stored as fac.cin
z_type fracti(z_type z){ z_type s; int n; DB a[17]=
{0.0833333333333333333, 0.0333333333333333333, .252380952380952381, .525606469002695418,
1.01152306812684171, 1.51747364915328740, 2.26948897420495996, 3.00991738325939817,
4.02688719234390123, 5.00276808075403005, 6.28391137081578218, 7.49591912238403393,
9.04066023436772670, 10.4893036545094823, 12.2971936103862059, 13.9828769539924302,
16.0535514167049355 };
s=a[16]/(z+19./(z+25./(z))); for(n=15;n>=0;n--) s=a[n]/(z+s);
return s + log(2.*M_PI)/2. - z + (z+.5)*log(z);
} // logfactorial for large values of argument except vicinity of negative part of real axis)
z_type infac0(z_type z){ z_type s; int n; DB c[28]={ 1.,
0.57721566490153286061, -0.65587807152025388108,
-0.042002635034095235529, 0.16653861138229148950,
-0.042197734555544336748, -0.0096219715278769735621,
0.0072189432466630995424, -0.0011651675918590651121,
-0.00021524167411495097282, 0.00012805028238811618615,
-0.000020134854780788238656, -0.0000012504934821426706573,
0.0000011330272319816958824, -2.0563384169776071035e-7,
6.1160951044814158179e-9, 5.0020076444692229301e-9,
-1.1812745704870201446e-9, 1.0434267116911005105e-10,
7.7822634399050712540e-12, -3.6968056186422057082e-12,
5.1003702874544759790e-13, -2.0583260535665067832e-14,
-5.3481225394230179824e-15, 1.2267786282382607902e-15,
-1.1812593016974587695e-16, 1.1866922547516003326e-18,
1.4123806553180317816e-18};
s=c[27]*z; for(n=26;n>0;n--) {s+=c[n]; s*=z;}
s+=c[0]; return s;}
z_type fac0(z_type z){ return 1./infac0(z);}
z_type expaun(z_type z) {int n,m; DB x,y;
x=Re(z);if(x<-.5) return expaun(z+1.)-log(z+1.);
if(x>.6) return expaun(z-1.)+log(z);
y=Im(z); if(fabs(y)>1.4)return expaun(z/2.)+expaun(z/2.-.5)+z*log(2.)-log(sqrt(M_PI));
return -log(infac0(z)); }
z_type lof(z_type z){DB x,y; x=Re(z); y=Im(z);
if(fabs(y)>5. ) return fracti(z);
if(x>0 && x*x+y*y>25.) return fracti(z);
return expaun(z); } // lof(z) returns 16 digits of complex logfactorial.
z_type infac1(z_type z){return infac0(z/2.)*infac0((z-1.)/2.)*sqrt(M_PI)/exp(log(2.)*z);}
z_type infac2(z_type z){return infac1(z/2.)*infac1((z-1.)/2.)*sqrt(M_PI)/exp(log(2.)*z);}
z_type infac3(z_type z){return infac2(z/2.)*infac2((z-1.)/2.)*sqrt(M_PI)/exp(log(2.)*z);}
z_type inhalf(z_type z){DB x=Re(z); DB y=Im(z); DB r=x*x+y*y;
if(r<2.) return infac0(z);
if(r<5.) return infac1(z);
return infac2(z); }
z_type infacmi(z_type z){ if(Re(z)> 1.) return infacmi(z-1.)/z; return inhalf(z);}
z_type infaclu(z_type z){ if(Re(z)<-.5) return infaclu(z+1.)*(z+1.);return inhalf(z);}
z_type infac(z_type z){DB x=Re(z),y=Im(z),t=x*x+y*y; if(t<1.)return infac0(z);
if( fabs(y)> 5. || (x>0 && t>25) ) return exp(-fracti(z));
if( x>0 ) return infacmi(z);
return infaclu(z);}
z_type fac(z_type z){ DB x=Re(z),y=Im(z),t=x*x+y*y; if(t<2.)return 1./infac0(z);
if( (x>0. && t>25.) || fabs(y)>5.) return exp(fracti(z));
if(x>0) return 1./infacmi(z);
return 1./infaclu(z);}
afacc.cin
// The code below should be stored as afacc.cin
z_type afacb(z_type z){
DB z0=0.461632144968362341262659542325721328468196204;
DB F0=-0.12148629053584960809551455717769158215135617313;
DB c2=.483836122723810585213722380854825370205628608;
DB p=0.2090973242496979633924701135209125815611056;
DB q=0.0565790271828431799463572817754001404669620;
DB A=0.0008685913050832152753870514845664790993724;
DB B=0.0002046727298252365296379380008904113017495;
z_type t=(log(z)-F0)/c2; z_type v=sqrt(t);
z_type u=v*(1.+v*(p+A*t))
/(1.+v*(q+B*t)) + z0; return u;}
z_type afacc(z_type z){ z_type a,c,d; a=afacb(z);
d=facp(a); c=z-fac(a); a+=c/d; if(abs(c)<1.e-12) return a;
d=facp(a); c=z-fac(a); a+=c/d; if(abs(c)<1.e-12) return a;
d=facp(a); c=z-fac(a); a+=c/d; if(abs(c)<1.e-12) return a;
d=facp(a); c=z-fac(a); a+=c/d; if(abs(c)<1.e-12) return a;
d=facp(a); c=z-fac(a); a+=c/d; return a;
}
afacmap.cin
Files fac.cin, afacc.cin above and ado.cin and conto.cin should be loaded in the working directory for compillation of the C++ code below:
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "fac.cin" //#include "sinc.cin" #include "facp.cin" #include "afacc.cin" //#include "superfac.cin" #include "conto.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=400,M1=M+1;
int N=401,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// FILE *o;o=fopen("fig2b.eps","w");ado(o,402,402);
FILE *o;o=fopen("afacmap.eps","w");ado(o,402,402);
fprintf(o,"201 201 translate\n 20 20 scale\n");
DO(m,M1) X[m]=-8.+.04*(m);
DO(n,200)Y[n]=-8.+.04*n;
Y[200]=-.01;
Y[201]= .01;
for(n=202;n<N1;n++) Y[n]=-8.+.04*(n-1.);
for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}}
for(n=-8;n<9;n++){ M( -8,n)L(8,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=afacc(z);
// c=fac(z);
// c=superfac(z);
// p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.;
p=Re(c);q=Im(c);
if(p>-6.9 && p<6.9 &&
// (fabs(y)>.034 ||x>-.9 ||fabs(x-int(x))>1.e-3) &&
q>-6.9 && q<6.9 //&& fabs(q)> 1.e-19
)
{g[m*N1+n]=p;f[m*N1+n]=q;}
}}
//fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.8;q=.7;
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=.4;q=.4;
for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".025 W 0 .6 0 RGB S\n");
for(m=0;m<2;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".025 W .9 0 0 RGB S\n");
for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".025 W 0 0 .9 RGB S\n");
for(m=1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".07 W .9 0 0 RGB S\n");
for(m=1;m<5;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".07 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".07 W .6 0 .6 RGB S\n");
for(m=-4;m<7;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".07 W 0 0 0 RGB S\n");
//#include"plofu.cin"
x=0.8856031944;
M(x,-8)L(x,8) fprintf(o,"0 setlinejoin 0 setlinecap 0.004 W 0 0 0 RGB S\n");
M(x,0)L(-8.1,0) fprintf(o," .05 W 1 1 1 RGB S\n");
DO(m,23){ M(x-.4*m,0)L(x-.4*(m+.5),0);} fprintf(o,".09 W .3 .3 0 RGB S\n");
//M(x,0)L(-8.1,0) fprintf(o,"[.19 .21]0 setdash .05 W 0 0 0 RGB S\n");
// May it be, that, some printers do not interpret well the dashing ?
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf afacmap.eps");
system( "open afacmap.pdf"); //for LINUX
// getchar(); system("killall Preview");//for mac
}
Latex generator of labels
% File afacmap.pdf should be generated with the code above in order to compile the Latex document below:
% %<br> \documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \usepackage{graphicx} %<br> \usepackage{rotating} %<br> \usepackage{hyperref} %<br> \paperwidth 339px %<br> \paperheight 336px %<br> \textwidth 165mm %<br> \textheight 240mm %<br> \topmargin -96pt %<br> \oddsidemargin -76pt %<br> \parindent 0pt %<br> \begin {document} %<br> \newcommand \sx {\scalebox} %<br> \newcommand \rme {{e}} %<br> \newcommand \rmi {{\rm i}} %imaginary unity is always roman font %<br> \newcommand \ds {\displaystyle} %<br> \newcommand \bN {\mathbb{N}} %<br> \newcommand \bC {\mathbb{C}} %<br> \newcommand \bR {\mathbb{R}} %<br> \newcommand \cO {\mathcal{O}} %<br> \newcommand \cF {\mathcal{F}} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \newcommand \nS {\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} %<br> \newcommand \pS {{~}~{~}} %<br> \newcommand \fac {\mathrm{Factorial}} %<br> \newcommand \ax { %<br> \put( 10,342){\sx{1.4}{$y$}} %<br> \put( 10,307){\sx{1.3}{$6$}} %<br> \put( 10,267){\sx{1.3}{$4$}} %<br> \put( 10,227){\sx{1.3}{$2$}} %<br> \put( 10,187){\sx{1.3}{$0$}} %<br> \put( 0,147){\sx{1.3}{$-2$}} %<br> \put( 0,107){\sx{1.3}{$-4$}} %<br> \put( 0, 67){\sx{1.3}{$-6$}} %<br> \put( 0, 27){\sx{1.3}{$-8$}} %<br> \put( 50, 18){\sx{1.3}{$-6$}} %<br> \put( 90, 18){\sx{1.3}{$-4$}} %<br> \put(130, 18){\sx{1.3}{$-2$}} %<br> \put(178, 18){\sx{1.3}{$0$}} %<br> \put(218, 18){\sx{1.3}{$2$}} %<br> \put(258, 18){\sx{1.3}{$4$}} %<br> \put(298, 18){\sx{1.3}{$6$}} %<br> \put(334, 19){\sx{1.4}{$x$}} %<br> } %<br> \begin{picture}(340,340) \ax %<br> \put(-20,-10){\includegraphics{afacmap}} %<br> \put(158,348){\rot{-73}\sx{1.5}{$q\!=\!1.2$}\ero} %<br> \put(102,346){\rot{-51}\sx{1.5}{$q\!=\!1.4$}\ero} %<br> \put( 61,313){\rot{-34}\sx{1.5}{$q\!=\!1.6$}\ero} %<br> \put( 38,268){\rot{-16}\sx{1.5}{$q\!=\!1.8$}\ero} %<br> \put( 32,236){\rot{ -2}\sx{1.5}{$q\!=\!2$}\ero} %<br> \put( 32,188){\sx{1.8}{\bf cut}} %<br> \put( 33,152){\sx{1.5}{$q\!=\!-2$}} %<br> \put( 36,106){\rot{15}\sx{1.5}{$q\!=\!-1.8$}\ero} %<br> \put( 64, 60){\rot{35}\sx{1.5}{$q\!=\!-1.6$}\ero} %<br> \put(112, 33){\rot{53}\sx{1.5}{$q\!=\!-1.4$}\ero} %<br> \put(166, 27){\rot{74}\sx{1.5}{$q\!=\!-1.2$}\ero} %<br> % %<br> \put(225,308){\rot{82}\sx{1.5}{$q\!=\!1$}\ero} %<br> \put(219, 83){\rot{-87}\sx{1.5}{$q\!=\!-1$}\ero} %<br> \put(244, 89){\rot{-68}\sx{1.5}{$q\!=\!-0.8$}\ero} %<br> \put(253,293){\rot{62}\sx{1.5}{$q\!=\!0.8$}\ero} %<br> \put(280,276){\rot{45}\sx{1.5}{$q\!=\!0.6$}\ero} %<br> \put(300,250){\rot{30}\sx{1.5}{$q\!=\!0.4$}\ero} %<br> \put(298,226){\rot{15}\sx{1.5}{$q\!=\!0.2$}\ero} %<br> \put(304,187){\sx{1.6}{$q$=0}} %<br> %\put(300,162){\rot{-15}\sx{1.5}{$q\!=\!-0.2$}\ero} %<br> \put(264,132){\rot{54}\sx{1.5}{$p$=2.8}\ero} %<br> \put(280,110){\rot{50}\sx{1.5}{$p$=3}\ero} %<br> \put(290, 70){\rot{44}\sx{1.5}{$p$=3.2}\ero} %<br> \put(300, 42){\rot{39}\sx{1.5}{$p$=3.4}\ero} %<br> \end{picture} %<br> \end{document} %<br> %
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 2,355 × 2,334 (1.03 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: