Parabolic coordinates

From TORI
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Parabolic coordinates allow separation of variables in the Schroedinger equation for the hydrogen atom. [1]

In the simplest form, relation of parabolic coordinates \(u,v\) with Cartesian coordinates \(\rho, z\) can be expressed with the following relation:

\(\displaystyle \rho=\sqrt{uv}\)

\(\displaystyle z=\frac{u\!-\!v}{2}\)

The straightforward generalisation to the three-dimensional case , with cartesian coordinates \(x,y,z\) can be expressed with relation

\(\displaystyle x=\rho \cos(\phi)\)

\(\displaystyle y=\rho \sin(\phi)\)

where \(\phi\) is additional, third coordinate. Then \(u,v,\phi\) are interpreted as parabolic coordinates.

Laplacian

Laplacian in parabolic coordinates can be written as follows:

\(\displaystyle \nabla^2= \Delta = \frac{4}{u+v} \Big( \partial_u u \partial_u + \partial_v v \partial_v \Big) + \frac{1}{uv} \partial_\phi^{\,2} \)

This can be verified, transforming the operator in the cylindrical coordinates,

\(\displaystyle \nabla^2= \frac{1}{r} \partial_r r \partial_r + \partial_z^2 + \frac{1}{r^2}\partial_\phi^2\)

The calculus can be done with the Mathematica code below:

Rq = Sqrt[r^2 + z^2]

Simplify[ReplaceAll[ 1/r D[r D[F[Rq+z, Rq-z], r], r] + D[D[F[Rq+z, Rq-z], z], z], {r -> Sqrt[u v], z -> u/2-v/2}], {u>0, v>0}]

that does

\(\frac{4 \left(F^{(0,1)}(u,v)+v F^{(0,2)}(u,v)+F^{(1,0)}(u,v)+u F^{(2,0)}(u,v)\right)}{u+v}\)

Notations

Some sites use different notations; \(u^2\) and \(v^2\) are treated as parabolic coordinates \(u\) and \(v\); and such a notation seems to be more usual [2] [3].

In such a way, term Parabolic coordinates should be provided at the beginning of each article.

Radius

In the application for atomic physics, the important is coordinate

\(\displaystyle r=\sqrt{x^2+y^2+z^2}\)

In parabolic coordinates, it can be expressed as follows:

\(\displaystyle r=\sqrt{\rho^2+z^2}=\sqrt{\big(\sqrt{uv}\big)^2+\frac{1}{4}(u\!-\!v)^2}=\frac{1}{2}u +\frac{1}{2}v\)

It is assumed, that \(u\!>\!0\) and \(v\!>\!0\).

Hydrogen atom

In the dimensionless variables, the Stationary Schroedinger equation can be written as follows:

\(\displaystyle - \Delta \psi - \frac{2}{r} \psi = \mathcal E \psi \)

The scale of physical coordinates is determined by the Bohr radius

\(\displaystyle \mathrm{BohrRadius}=\frac{\hbar^2}{e^2 M}\approx 5.2917720859 \times 10^{-11}\, \mathrm{Meter} \)

and the scale of physical energy is determined by the Bohr energy

\(\displaystyle \mathrm{BohrEnedry}=\frac{e^4 M}{2\hbar^2}\approx 2.17987197 \times 10^{-18}\, \mathrm{Joule}\)

In parabolic coordinates, the Stationary Schroedinger equation appears as follows:

Referebces

  1. http://www.scielo.org.mx/pdf/rmf/v54n6/v54n6a9.pdf G.F. Torres del Castillo, E. Navarro Morales. Bound states of the hydrogen atom in parabolic coordinates. REVISTAMEXICANADEF ́ISICA54(6)454–458.
  2. http://mathworld.wolfram.com/ParabolicCoordinates.html
  3. https://en.wikipedia.org/wiki/Parabolic_coordinates

https://en.wikipedia.org/wiki/Parabolic_coordinates

Keywords

Atomic optics, Hydrogen, Quantum mechanics, Schroedinger equation