Difference between revisions of "File:Arctra4tesT.jpg"

From TORI
Jump to navigation Jump to search
(Importing image file)
 
 
Line 1: Line 1:
  +
Agreement for the primary approximation app3 of function [[ArcTra]].
Importing image file
 
  +
  +
$\mathrm{ArcTra}(z)\approx \mathrm{app4}(z)=z-\mathrm e^z$ $
  +
+\mathrm e^{2z}$ $
  +
-\frac{1}{2}\mathrm e^{3z}$
  +
  +
$\displaystyle
  +
\mathcal A_4(z)= $ $\displaystyle
  +
-\lg \left(
  +
\frac{ |\mathrm{tra}(\mathrm{app4}(z))-z| }
  +
{ |\mathrm{tra}(\mathrm{app4}(z))| + |z|}
  +
\right)$
  +
  +
$\mathcal A=\mathcal A_4(x+\mathrm i y)$ is shown in the $x$, $y$ plane.
  +
  +
==[[C++]] generator of curves==
  +
  +
//<poem><nomathjax><nowiki>
  +
#include <math.h>
  +
#include <stdio.h>
  +
#include <stdlib.h>
  +
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
using namespace std;
  +
#include<complex>
  +
typedef complex<double> z_type;
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define I z_type(0.,1.)
  +
#include "conto.cin"
  +
//z_type zex(z_type z){ return z*exp(z);}
  +
z_type tra(z_type z){ return z+exp(z);}
  +
//#include "Tania.cin"
  +
//#include "LambertW.cin"
  +
//z_type ArcTra(z_type z){ return z-LambertW(exp(z));}
  +
  +
z_type arctra1(z_type z){
  +
static DB c[22]={0.,0.5,-0.0625,.005208333333333333, // 0 - 3
  +
0.0003255208333333333, -0.00021158854166666667, //5
  +
0.00003187391493055556, 1.7680819072420636e-6, //7
  +
-1.8520960732111855e-6, 3.5344398000673434e-7, //9
  +
8.173825669330684e-9, -2.0624513960198102e-8, //11
  +
4.727254469326131e-9, -5.254838295493782e-11, //13
  +
-2.5497322696797093e-10,6.897078914225712e-11, //15
  +
-3.004636375311634e-12,-3.313983848679892e-12, //17
  +
1.054773386200646e-12,-7.811289918947213e-14, //19
  +
-4.391790189701172e-14, 1.6573692169992586e-14}; //21
  +
z_type t=z-1.; z_type s=c[21]*z; int n;
  +
for(n=20;n>0;n--){ s+=c[n]; s*=t;}
  +
return s;}
  +
  +
z_type arctra1i3(z_type z) { z_type t=arctra1(z);
  +
t+=(z-t-exp(t))/(1.+exp(t));
  +
t+=(z-t-exp(t))/(1.+exp(t));
  +
t+=(z-t-exp(t))/(1.+exp(t));
  +
return t;
  +
}
  +
  +
z_type arctra2(z_type z) { z_type s,t;
  +
t=z+z_type(1.,-M_PI); t/=2.; t=sqrt(t);
  +
//s= I*M_PI - z_type(0.,-2.)*t;
  +
//s= I*M_PI + t*(z_type(0.,2.)+t*(2./3));
  +
s= I*M_PI
  +
+t*( z_type(0.,-2.)
  +
+t*( 2./3
  +
+t*( z_type(0.,2./9.)
  +
+t*( -8./135.
  +
+t*( z_type(0.,-1./135.)
  +
+t*( -32./8505.
  +
+t*( z_type(0.,-139./42525.)
  +
+t*( 32./25515.
  +
+t*( z_type(0.,571./4592700.)
  +
+t*( 35968./189448875.
  +
))))))))));
  +
return s;
  +
}
  +
  +
z_type arctra3(z_type z)
  +
{ z_type c[5]; z_type L=log(z); z_type s; int n,M=4;
  +
c[0]= -1.;
  +
c[1]= 1. + L*(-1./2. );
  +
c[2]= -1. + L*( 1.5 + L*( -1./3.)) ;
  +
c[3]= 1. + L*(-3. + L*( 11./6. + L*(-1./4.))) ;
  +
c[4]= -1. + L*( 5. + L*(-35./6. + L*(25./12. + L*(-1./5.))));
  +
s=c[M]; for(n=M-1;n>=0;n--){ s/=z; s+=c[n];}
  +
//s=-1.;
  +
// s=c[0]+c[1]/z;
  +
return L*(1.+s/z);
  +
}
  +
  +
z_type arctra4(z_type z)
  +
{ z_type e=exp(z);
  +
return z
  +
+e*(-1.
  +
+e*( 1.
  +
+e*(-0.5)
  +
));
  +
}
  +
  +
int main(){ int j,k,m,n; DB x1,x,y, p,q, t; z_type z,c,d, cu,cd;
  +
int M=601,M1=M+1;
  +
int N=601,N1=N+1;
  +
//int N=801,N1=N+1;
  +
DB X[M1],Y[N1];
  +
DB *g, *f, *w; // w is working array.
  +
char *v;
  +
g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
  +
f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
  +
w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
  +
v=(char *)malloc((size_t)((M1*N1)*sizeof(char)));
  +
//char v[M1*N1]; // v is working array
  +
FILE *o;o=fopen("arctra4tes.eps","w"); ado(o,1202,1202);
  +
fprintf(o,"601 601 translate\n 100 100 scale\n");
  +
fprintf(o,"1 setlinejoin 2 setlinecap\n");
  +
DO(m,M1) X[m]=-6.+.02*(m-.5);
  +
DO(n,N1) Y[n]=-6.+.02*(n-.5);
  +
//DO(n,N1) Y[n]=-6.+.0151*(n-.5);
  +
//for(n=0;n<N1;n++) { Y[n]=0.6*sinh((3./200.)*(n-200.5)); printf("%3d %9.6f\n",n,Y[n]); }
  +
for(m=-6;m<7;m++) {M(m,-6)L(m,6)}
  +
for(n=-6;n<7;n++) {M( -6,n)L(6,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
  +
DO(m,M1)DO(n,N1){ g[m*N1+n]=999;
  +
f[m*N1+n]=999;
  +
}
  +
DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x);
  +
DO(n,N1){y=Y[n]; z=z_type(x,y);
  +
// c=ArcTra(z);
  +
// c=Tania(z+1.); // WrightOmega(z);
  +
// c=z-Tania(z-1.);
  +
c=arctra4(z);
  +
c=tra(c);
  +
p=-log( abs(c-z)/(abs(c)+abs(z)) )/log(10.);
  +
//p=Re(c); q=Im(c);
  +
if(p>.1 && p<19. ) g[m*N1+n]=p;
  +
// if(p>-19 && p<19 && fabs(q)>1.e-12 && fabs(p)>1.e-12)
  +
//f[m*N1+n]=q;
  +
}}
  +
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.;q=.1;
  +
/*
  +
for(m=-8;m<8;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".007 W 0 .6 0 RGB S\n");
  +
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".007 W .9 0 0 RGB S\n");
  +
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".007 W 0 0 .9 RGB S\n");
  +
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".02 W .8 0 0 RGB S\n");
  +
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".02 W 0 0 .8 RGB S\n");
  +
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .5 0 .5 RGB S\n");
  +
for(m=-16;m<17;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".02 W 0 0 0 RGB S\n");
  +
  +
M(-6, M_PI)L(-1, M_PI)
  +
M(-6,-M_PI)L(-1,-M_PI)
  +
fprintf(o,".01 W 1 1 1 RGB S\n");
  +
*/
  +
  +
conto(o,g,w,v,X,Y,M,N,(15. ),-2,2); fprintf(o,".03 W .7 0 1 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N,(14. ),-2,2); fprintf(o,".01 W 0 0 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N,(13. ),-2,2); fprintf(o,".01 W 0 0 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N,(12. ),-1,1); fprintf(o,".04 W 0 0 1 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N,(11. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N,(10. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N, (9. ),-p,p); fprintf(o,".04 W 0 .8 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N, (8. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N, (7. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N, (6. ),-p,p); fprintf(o,".04 W 1 0 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N, (5. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N, (4. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N, (3. ),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N, (2. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
  +
conto(o,g,w,v,X,Y,M,N, (1. ),-p,p); fprintf(o,".06 W 1 .5 0 RGB S\n");
  +
  +
  +
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%');
  +
fclose(o); free(f); free(g); free(w);
  +
system("epstopdf arctra4tes.eps");
  +
system( "open arctra4tes.pdf"); //for macintosh
  +
getchar(); system("killall Preview"); // For macintosh
  +
}
  +
//</nowiki></nomathjax></poem>
  +
  +
==[[Latex]] generator of labels==
  +
  +
%<poem><nomathjax><nowiki>
  +
\documentclass[12pt]{article}
  +
\paperheight 1228px
  +
\paperwidth 1236px
  +
\textwidth 1394px
  +
\textheight 1300px
  +
\topmargin -104px
  +
\oddsidemargin -78px
  +
\usepackage{graphics}
  +
\usepackage{rotating}
  +
\newcommand \sx {\scalebox}
  +
\newcommand \rot {\begin{rotate}}
  +
\newcommand \ero {\end{rotate}}
  +
\newcommand \ing {\includegraphics}
  +
\newcommand \rmi {\mathrm{i}}
  +
\begin{document}
  +
\newcommand \zoomax {
  +
\put(18,1206){\sx{3.3}{$y$}}
  +
\put(18,1113){\sx{3}{$5$}}
  +
\put(18,1013){\sx{3}{$4$}}
  +
\put(18, 913){\sx{3}{$3$}}
  +
\put(18, 813){\sx{3}{$2$}}
  +
\put(18, 713){\sx{3}{$1$}}
  +
\put(18, 613){\sx{3}{$0$}}
  +
\put(-6, 513){\sx{3}{$-1$}}
  +
\put(-6, 413){\sx{3}{$-2$}}
  +
\put(-6, 313){\sx{3}{$-3$}}
  +
\put(-6, 213){\sx{3}{$-4$}}
  +
\put(-6, 113){\sx{3}{$-5$}}
  +
\put(-6, 013){\sx{3}{$-6$}}
  +
\put(014, -5){\sx{3}{$-6$}}
  +
\put(114, -5){\sx{3}{$-5$}}
  +
\put(214, -5){\sx{3}{$-4$}}
  +
\put(314, -5){\sx{3}{$-3$}}
  +
\put(414, -5){\sx{3}{$-2$}}
  +
\put(514, -5){\sx{3}{$-1$}}
  +
\put(635, -5){\sx{3}{$0$}}
  +
\put(735, -5){\sx{3}{$1$}}
  +
\put(835, -5){\sx{3}{$2$}}
  +
\put(935, -5){\sx{3}{$3$}}
  +
\put(1035, -5){\sx{3}{$4$}}
  +
\put(1135, -5){\sx{3}{$5$}}
  +
\put(1227,-4){\sx{3}{$x$}}
  +
}
  +
\parindent 0pt
  +
\sx{1}{\begin{picture}(1252,1220)
  +
%\put(40,20){\ing{ArcTraMap}}
  +
\zoomax
  +
%\put(40,20){\ing{arctra1tes2}}
  +
%\put(40,20){\ing{arctra2tes}}
  +
%\put(40,20){\ing{arctra3tes}}
  +
\put(40,20){\ing{arctra4tes}}
  +
  +
\put(276,444){\sx{8}{\rot{90}$\mathcal A\!=\!6$\ero}}
  +
\put(490,444){\sx{8}{\rot{90}$\mathcal A\!=\!3$\ero}}
  +
\put(630,444){\sx{8}{\rot{90}$\mathcal A\!=\!1$\ero}}
  +
\put(860,540){\sx{8}{$\mathcal A\!<\!1$}}
  +
\end{picture}}
  +
\end{document}
  +
  +
</nowiki></nomathjax></poem>
  +
  +
[[Category:ArcTra]]
  +
[[Category:Approximation]]
  +
[[Category:Inverse function]]
  +
[[Category:C++]]
  +
[[Category:Latex]]
  +
[[Category:Trappmann function]]

Latest revision as of 08:30, 1 December 2018

Agreement for the primary approximation app3 of function ArcTra.

$\mathrm{ArcTra}(z)\approx \mathrm{app4}(z)=z-\mathrm e^z$ $ +\mathrm e^{2z}$ $ -\frac{1}{2}\mathrm e^{3z}$

$\displaystyle \mathcal A_4(z)= $ $\displaystyle -\lg \left( \frac{ |\mathrm{tra}(\mathrm{app4}(z))-z| }

      { |\mathrm{tra}(\mathrm{app4}(z))| + |z|}

\right)$

$\mathcal A=\mathcal A_4(x+\mathrm i y)$ is shown in the $x$, $y$ plane.

C++ generator of curves

//


#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
//z_type zex(z_type z){ return z*exp(z);}
  z_type tra(z_type z){ return z+exp(z);}
//#include "Tania.cin"
//#include "LambertW.cin"
//z_type ArcTra(z_type z){ return z-LambertW(exp(z));}

z_type arctra1(z_type z){
static DB c[22]={0.,0.5,-0.0625,.005208333333333333, // 0 - 3
0.0003255208333333333, -0.00021158854166666667, //5
0.00003187391493055556, 1.7680819072420636e-6, //7
-1.8520960732111855e-6, 3.5344398000673434e-7, //9
 8.173825669330684e-9, -2.0624513960198102e-8, //11
 4.727254469326131e-9, -5.254838295493782e-11, //13
-2.5497322696797093e-10,6.897078914225712e-11, //15
-3.004636375311634e-12,-3.313983848679892e-12, //17
 1.054773386200646e-12,-7.811289918947213e-14, //19
-4.391790189701172e-14, 1.6573692169992586e-14}; //21
z_type t=z-1.; z_type s=c[21]*z; int n;
for(n=20;n>0;n--){ s+=c[n]; s*=t;}
return s;}

z_type arctra1i3(z_type z) { z_type t=arctra1(z);
t+=(z-t-exp(t))/(1.+exp(t));
t+=(z-t-exp(t))/(1.+exp(t));
t+=(z-t-exp(t))/(1.+exp(t));
return t;
}

z_type arctra2(z_type z) { z_type s,t;
t=z+z_type(1.,-M_PI); t/=2.; t=sqrt(t);
//s= I*M_PI - z_type(0.,-2.)*t;
//s= I*M_PI + t*(z_type(0.,2.)+t*(2./3));
s= I*M_PI
+t*( z_type(0.,-2.)
+t*( 2./3
+t*( z_type(0.,2./9.)
+t*( -8./135.
+t*( z_type(0.,-1./135.)
+t*( -32./8505.
+t*( z_type(0.,-139./42525.)
+t*( 32./25515.
+t*( z_type(0.,571./4592700.)
+t*( 35968./189448875.
))))))))));
return s;
}

z_type arctra3(z_type z)
{ z_type c[5]; z_type L=log(z); z_type s; int n,M=4;
c[0]= -1.;
c[1]= 1. + L*(-1./2. );
c[2]= -1. + L*( 1.5 + L*( -1./3.)) ;
c[3]= 1. + L*(-3. + L*( 11./6. + L*(-1./4.))) ;
c[4]= -1. + L*( 5. + L*(-35./6. + L*(25./12. + L*(-1./5.))));
s=c[M]; for(n=M-1;n>=0;n--){ s/=z; s+=c[n];}
//s=-1.;
// s=c[0]+c[1]/z;
return L*(1.+s/z);
}

z_type arctra4(z_type z)
{ z_type e=exp(z);
return z
+e*(-1.
+e*( 1.
+e*(-0.5)
));
}

int main(){ int j,k,m,n; DB x1,x,y, p,q, t; z_type z,c,d, cu,cd;
int M=601,M1=M+1;
int N=601,N1=N+1;
//int N=801,N1=N+1;
DB X[M1],Y[N1];
DB *g, *f, *w; // w is working array.
char *v;
g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
v=(char *)malloc((size_t)((M1*N1)*sizeof(char)));
//char v[M1*N1]; // v is working array
FILE *o;o=fopen("arctra4tes.eps","w"); ado(o,1202,1202);
fprintf(o,"601 601 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
DO(m,M1) X[m]=-6.+.02*(m-.5);
DO(n,N1) Y[n]=-6.+.02*(n-.5);
//DO(n,N1) Y[n]=-6.+.0151*(n-.5);
//for(n=0;n<N1;n++) { Y[n]=0.6*sinh((3./200.)*(n-200.5)); printf("%3d %9.6f\n",n,Y[n]); }
for(m=-6;m<7;m++) {M(m,-6)L(m,6)}
for(n=-6;n<7;n++) {M( -6,n)L(6,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=999;
                       f[m*N1+n]=999;
}
DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=ArcTra(z);
// c=Tania(z+1.); // WrightOmega(z);
// c=z-Tania(z-1.);
c=arctra4(z);
c=tra(c);
p=-log( abs(c-z)/(abs(c)+abs(z)) )/log(10.);
//p=Re(c); q=Im(c);
        if(p>.1 && p<19. ) g[m*N1+n]=p;
// if(p>-19 && p<19 && fabs(q)>1.e-12 && fabs(p)>1.e-12)
//f[m*N1+n]=q;
       }}
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.;q=.1;
/*
for(m=-8;m<8;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".007 W 0 .6 0 RGB S\n");
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".007 W .9 0 0 RGB S\n");
for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".007 W 0 0 .9 RGB S\n");
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".02 W .8 0 0 RGB S\n");
for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".02 W 0 0 .8 RGB S\n");
               conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .5 0 .5 RGB S\n");
for(m=-16;m<17;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".02 W 0 0 0 RGB S\n");

M(-6, M_PI)L(-1, M_PI)
M(-6,-M_PI)L(-1,-M_PI)
fprintf(o,".01 W 1 1 1 RGB S\n");
*/

 conto(o,g,w,v,X,Y,M,N,(15. ),-2,2); fprintf(o,".03 W .7 0 1 RGB S\n");
 conto(o,g,w,v,X,Y,M,N,(14. ),-2,2); fprintf(o,".01 W 0 0 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N,(13. ),-2,2); fprintf(o,".01 W 0 0 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N,(12. ),-1,1); fprintf(o,".04 W 0 0 1 RGB S\n");
 conto(o,g,w,v,X,Y,M,N,(11. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N,(10. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N, (9. ),-p,p); fprintf(o,".04 W 0 .8 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N, (8. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N, (7. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N, (6. ),-p,p); fprintf(o,".04 W 1 0 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N, (5. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N, (4. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N, (3. ),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N, (2. ),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n");
 conto(o,g,w,v,X,Y,M,N, (1. ),-p,p); fprintf(o,".06 W 1 .5 0 RGB S\n");


 fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o); free(f); free(g); free(w);
      system("epstopdf arctra4tes.eps");
      system( "open arctra4tes.pdf"); //for macintosh
      getchar(); system("killall Preview"); // For macintosh
}
//

Latex generator of labels

%


\documentclass[12pt]{article}
\paperheight 1228px
\paperwidth 1236px
\textwidth 1394px
\textheight 1300px
\topmargin -104px
\oddsidemargin -78px
\usepackage{graphics}
\usepackage{rotating}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \rmi {\mathrm{i}}
\begin{document}
\newcommand \zoomax {
\put(18,1206){\sx{3.3}{$y$}}
\put(18,1113){\sx{3}{$5$}}
\put(18,1013){\sx{3}{$4$}}
\put(18, 913){\sx{3}{$3$}}
\put(18, 813){\sx{3}{$2$}}
\put(18, 713){\sx{3}{$1$}}
\put(18, 613){\sx{3}{$0$}}
\put(-6, 513){\sx{3}{$-1$}}
\put(-6, 413){\sx{3}{$-2$}}
\put(-6, 313){\sx{3}{$-3$}}
\put(-6, 213){\sx{3}{$-4$}}
\put(-6, 113){\sx{3}{$-5$}}
\put(-6, 013){\sx{3}{$-6$}}
\put(014, -5){\sx{3}{$-6$}}
\put(114, -5){\sx{3}{$-5$}}
\put(214, -5){\sx{3}{$-4$}}
\put(314, -5){\sx{3}{$-3$}}
\put(414, -5){\sx{3}{$-2$}}
\put(514, -5){\sx{3}{$-1$}}
\put(635, -5){\sx{3}{$0$}}
\put(735, -5){\sx{3}{$1$}}
\put(835, -5){\sx{3}{$2$}}
\put(935, -5){\sx{3}{$3$}}
\put(1035, -5){\sx{3}{$4$}}
\put(1135, -5){\sx{3}{$5$}}
\put(1227,-4){\sx{3}{$x$}}
}
\parindent 0pt
\sx{1}{\begin{picture}(1252,1220)
%\put(40,20){\ing{ArcTraMap}}
\zoomax
%\put(40,20){\ing{arctra1tes2}}
%\put(40,20){\ing{arctra2tes}}
%\put(40,20){\ing{arctra3tes}}
\put(40,20){\ing{arctra4tes}}

\put(276,444){\sx{8}{\rot{90}$\mathcal A\!=\!6$\ero}}
\put(490,444){\sx{8}{\rot{90}$\mathcal A\!=\!3$\ero}}
\put(630,444){\sx{8}{\rot{90}$\mathcal A\!=\!1$\ero}}
\put(860,540){\sx{8}{$\mathcal A\!<\!1$}}
\end{picture}}
\end{document}

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:10, 1 December 2018Thumbnail for version as of 06:10, 1 December 20182,575 × 2,558 (489 KB)Maintenance script (talk | contribs)Importing image file

The following page uses this file:

Metadata