Difference between revisions of "NemBra"

From TORI
Jump to navigation Jump to search
 
m (Text replacement - "\$([^\$]+)\$" to "\\(\1\\)")
 
Line 1: Line 1:
[[File:Nembraplot.jpg|100px|thumb|$x\!+\!\mathrm i y\!=\!\mathrm{Nembra}(q)$ for real $q$]]
+
[[File:Nembraplot.jpg|100px|thumb|\(x\!+\!\mathrm i y\!=\!\mathrm{Nembra}(q)\) for real \(q\)]]
 
[[NemBra]] is holomorphic function that expresses values of the [[Nemtsov function]]
 
[[NemBra]] is holomorphic function that expresses values of the [[Nemtsov function]]
 
at its brach point, as function of the parameter of the Nemtsov function.
 
at its brach point, as function of the parameter of the Nemtsov function.
Line 7: Line 7:
 
The [[Nemtsov function]] is polynomial of 4th order of special kind,
 
The [[Nemtsov function]] is polynomial of 4th order of special kind,
   
$\mathrm{Nem}_q(z)=z+z^3+qz^4$
+
\(\mathrm{Nem}_q(z)=z+z^3+qz^4\)
   
 
its derivative
 
its derivative
   
$\mathrm{Nem}_q'(z)=1+3z^2+4qz^3$
+
\(\mathrm{Nem}_q'(z)=1+3z^2+4qz^3\)
   
If $z=\mathrm{NemBra}(q)~$ , then $\mathrm{Nem}_q'(z)=0$
+
If \(z=\mathrm{NemBra}(q)~\) , then \(\mathrm{Nem}_q'(z)=0\)
   
The inverse function of the Nemtsov function, id est, $\mathrm{ArcNem}_q=\mathrm{Nem}_q^{-1}$
+
The inverse function of the Nemtsov function, id est, \(\mathrm{ArcNem}_q=\mathrm{Nem}_q^{-1}\)
   
has branchpoint $\mathrm{Nem}_q(\mathrm{NemBra}(q))$
+
has branchpoint \(\mathrm{Nem}_q(\mathrm{NemBra}(q))\)
   
 
For real values of the argument, the [[parametric plot]] of function [[NemBra]] is shown in figure at right: line
 
For real values of the argument, the [[parametric plot]] of function [[NemBra]] is shown in figure at right: line
   
$x=\Re(\mathrm{NemBra}(q))$,
+
\(x=\Re(\mathrm{NemBra}(q))\),
   
$y=\Im(\mathrm{NemBra}(q))$
+
\(y=\Im(\mathrm{NemBra}(q))\)
   
is drawn in the $x$, $y$ plane. Corresponding values of $q$ are marked along the curve.
+
is drawn in the \(x\), \(y\) plane. Corresponding values of \(q\) are marked along the curve.
   
 
==Special case: value at zero==
 
==Special case: value at zero==
Line 31: Line 31:
 
There is specific value at zero:
 
There is specific value at zero:
   
$z_0=\mathrm{NemBra}(0)=\mathrm i /\sqrt{3} \approx 0.6\, \mathrm i$
+
\(z_0=\mathrm{NemBra}(0)=\mathrm i /\sqrt{3} \approx 0.6\, \mathrm i\)
   
 
Then, function [[NemBran]] at zero can be expressed:
 
Then, function [[NemBran]] at zero can be expressed:
   
$~ \displaystyle
+
\(~ \displaystyle
 
\mathrm{Nembran}(0) = \mathrm{Nembra}(z_0) =
 
\mathrm{Nembran}(0) = \mathrm{Nembra}(z_0) =
 
\frac{\mathrm i}{\sqrt{3}}-\frac{3\, \mathrm i}{\sqrt{3}} =
 
\frac{\mathrm i}{\sqrt{3}}-\frac{3\, \mathrm i}{\sqrt{3}} =
\sqrt{\frac{4}{27}}\, \mathrm i \approx 0.4\, \mathrm i$
+
\sqrt{\frac{4}{27}}\, \mathrm i \approx 0.4\, \mathrm i\)
   
 
==Explicit representation and the evaluation==
 
==Explicit representation and the evaluation==
   
At given $q$, the cubic equation
+
At given \(q\), the cubic equation
   
$1+3z^2+4qz^3 = 0$
+
\(1+3z^2+4qz^3 = 0\)
   
has 3 solutions. For positive $q$, one of these solutions is real and negative, and does not bring new the cut lines of finction [[ArqNem]], as anyway it has cut along the negative part of the real axis. Two other solutions are related with complex conjugation; so, for the evaluation, it is sufficient co consider one of them.
+
has 3 solutions. For positive \(q\), one of these solutions is real and negative, and does not bring new the cut lines of finction [[ArqNem]], as anyway it has cut along the negative part of the real axis. Two other solutions are related with complex conjugation; so, for the evaluation, it is sufficient co consider one of them.
Namely this solution is denoted with name [[NemBra]] and shown in the parametric plot at right hand side figure as function of $q$.
+
Namely this solution is denoted with name [[NemBra]] and shown in the parametric plot at right hand side figure as function of \(q\).
   
 
Function NemBra can be represented explicitly with combination of radicals, at the appropriate choice of the branch of these radicals.
 
Function NemBra can be represented explicitly with combination of radicals, at the appropriate choice of the branch of these radicals.
   
Let $~ \rho=-1-8q^2+4\sqrt{q^2+4q^4}$
+
Let \(~ \rho=-1-8q^2+4\sqrt{q^2+4q^4}\)
   
Let $~ V=\rho^{1/3}$
+
Let \(~ V=\rho^{1/3}\)
   
Then $~ \displaystyle
+
Then \(~ \displaystyle
\mathrm{NemBra}(q)=\frac{1}{4q}\left(-1+V+1/V\right)$
+
\mathrm{NemBra}(q)=\frac{1}{4q}\left(-1+V+1/V\right)\)
   
Extension of power $1/3$ beyond the cut line and the same about the square root above provides other solutions
+
Extension of power \(1/3\) beyond the cut line and the same about the square root above provides other solutions
 
and other branch points of function [[ArqNem]].
 
and other branch points of function [[ArqNem]].
   
 
==Inverse function==
 
==Inverse function==
   
[[File:Arcnembrat.jpg|400px|thumb| $u\!+\!\mathrm i v=\mathrm{ArcNemBra}(x\!+\!\mathrm i y)$]]
+
[[File:Arcnembrat.jpg|400px|thumb| \(u\!+\!\mathrm i v=\mathrm{ArcNemBra}(x\!+\!\mathrm i y)\)]]
 
Inverse function of NemBra is denoted with [[ArcNemBra]]. In such a way,
 
Inverse function of NemBra is denoted with [[ArcNemBra]]. In such a way,
   
$\mathrm{NemBra}(\mathrm{ArcNemBra}(z))=z$
+
\(\mathrm{NemBra}(\mathrm{ArcNemBra}(z))=z\)
   
 
ArcNemBra is [[elementary function]],
 
ArcNemBra is [[elementary function]],
   
$\displaystyle
+
\(\displaystyle
\mathrm{ArcNemBra}(z)= - \frac{1\!+\! 3z^2}{4\, z^3}$
+
\mathrm{ArcNemBra}(z)= - \frac{1\!+\! 3z^2}{4\, z^3}\)
   
Complex map of function [[ArcNemBra]] is shown in figure at right; $u\!+\!\mathrm i v=\mathrm{ArcNemBra}(x\!+\!\mathrm i y$.
+
Complex map of function [[ArcNemBra]] is shown in figure at right; \(u\!+\!\mathrm i v=\mathrm{ArcNemBra}(x\!+\!\mathrm i y\).
Lines $u\!=\!\mathrm{const}$ and
+
Lines \(u\!=\!\mathrm{const}\) and
lines $u\!=\!\mathrm{const}$ are drawn in the $x$, $y$ plane.
+
lines \(u\!=\!\mathrm{const}\) are drawn in the \(x\), \(y\) plane.
   
Level $v\!=\!0$ iz marked with pink line. In the First quadrant of the $x$, $y$ plane, It is the same line, as the [[parametric plot]] of function [[NemBra]] for real values of the argument.
+
Level \(v\!=\!0\) iz marked with pink line. In the First quadrant of the \(x\), \(y\) plane, It is the same line, as the [[parametric plot]] of function [[NemBra]] for real values of the argument.
   
 
==Usage==
 
==Usage==
Line 85: Line 85:
 
Function [[ArqNem]] is inverse function of the [[Nemtsov function]];
 
Function [[ArqNem]] is inverse function of the [[Nemtsov function]];
   
$\mathrm{Nem}_q(\mathrm{ArqNem}_q(z))=z$
+
\(\mathrm{Nem}_q(\mathrm{ArqNem}_q(z))=z\)
   
 
Function [[ArqNem]] is necessary for evaluation of iterates of the [[Nemtsov function]], constructed at zero.
 
Function [[ArqNem]] is necessary for evaluation of iterates of the [[Nemtsov function]], constructed at zero.

Latest revision as of 18:46, 30 July 2019

\(x\!+\!\mathrm i y\!=\!\mathrm{Nembra}(q)\) for real \(q\)

NemBra is holomorphic function that expresses values of the Nemtsov function at its brach point, as function of the parameter of the Nemtsov function.

Description

The Nemtsov function is polynomial of 4th order of special kind,

\(\mathrm{Nem}_q(z)=z+z^3+qz^4\)

its derivative

\(\mathrm{Nem}_q'(z)=1+3z^2+4qz^3\)

If \(z=\mathrm{NemBra}(q)~\) , then \(\mathrm{Nem}_q'(z)=0\)

The inverse function of the Nemtsov function, id est, \(\mathrm{ArcNem}_q=\mathrm{Nem}_q^{-1}\)

has branchpoint \(\mathrm{Nem}_q(\mathrm{NemBra}(q))\)

For real values of the argument, the parametric plot of function NemBra is shown in figure at right: line

\(x=\Re(\mathrm{NemBra}(q))\),

\(y=\Im(\mathrm{NemBra}(q))\)

is drawn in the \(x\), \(y\) plane. Corresponding values of \(q\) are marked along the curve.

Special case: value at zero

There is specific value at zero:

\(z_0=\mathrm{NemBra}(0)=\mathrm i /\sqrt{3} \approx 0.6\, \mathrm i\)

Then, function NemBran at zero can be expressed:

\(~ \displaystyle \mathrm{Nembran}(0) = \mathrm{Nembra}(z_0) = \frac{\mathrm i}{\sqrt{3}}-\frac{3\, \mathrm i}{\sqrt{3}} = \sqrt{\frac{4}{27}}\, \mathrm i \approx 0.4\, \mathrm i\)

Explicit representation and the evaluation

At given \(q\), the cubic equation

\(1+3z^2+4qz^3 = 0\)

has 3 solutions. For positive \(q\), one of these solutions is real and negative, and does not bring new the cut lines of finction ArqNem, as anyway it has cut along the negative part of the real axis. Two other solutions are related with complex conjugation; so, for the evaluation, it is sufficient co consider one of them. Namely this solution is denoted with name NemBra and shown in the parametric plot at right hand side figure as function of \(q\).

Function NemBra can be represented explicitly with combination of radicals, at the appropriate choice of the branch of these radicals.

Let \(~ \rho=-1-8q^2+4\sqrt{q^2+4q^4}\)

Let \(~ V=\rho^{1/3}\)

Then \(~ \displaystyle \mathrm{NemBra}(q)=\frac{1}{4q}\left(-1+V+1/V\right)\)

Extension of power \(1/3\) beyond the cut line and the same about the square root above provides other solutions and other branch points of function ArqNem.

Inverse function

\(u\!+\!\mathrm i v=\mathrm{ArcNemBra}(x\!+\!\mathrm i y)\)

Inverse function of NemBra is denoted with ArcNemBra. In such a way,

\(\mathrm{NemBra}(\mathrm{ArcNemBra}(z))=z\)

ArcNemBra is elementary function,

\(\displaystyle \mathrm{ArcNemBra}(z)= - \frac{1\!+\! 3z^2}{4\, z^3}\)

Complex map of function ArcNemBra is shown in figure at right; \(u\!+\!\mathrm i v=\mathrm{ArcNemBra}(x\!+\!\mathrm i y\). Lines \(u\!=\!\mathrm{const}\) and lines \(u\!=\!\mathrm{const}\) are drawn in the \(x\), \(y\) plane.

Level \(v\!=\!0\) iz marked with pink line. In the First quadrant of the \(x\), \(y\) plane, It is the same line, as the parametric plot of function NemBra for real values of the argument.

Usage

Function NemBra is necessary to determine the cut lines of function ArqNem, in order to choose the appropriate branch for the evaluation.

Function ArqNem is inverse function of the Nemtsov function;

\(\mathrm{Nem}_q(\mathrm{ArqNem}_q(z))=z\)

Function ArqNem is necessary for evaluation of iterates of the Nemtsov function, constructed at zero. These iterates should be used as example of exotic iterates for the book Superfunctions.

It happens, that namely function ArqNem is good for construction of iterates of the Nemtsov Function, while two other its inverse functions ArcNem and ArkNem gives the unnecessary cut lines of the Abel function (denoted as AuNem), and these extra cut lines may reduce the application of the resulting iterates.


References


Keywords

Abel function, ArqNem, AuNem, Exotic iterate, Nemtsov function, Superfunctions