Difference between revisions of "File:TaniaSinguMapT.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of the approximation of the [[Tania function]] with the truncated series of the expansion at the branch point $-2\!+\!\mathrm i$. |
||
− | Importing image file |
||
+ | |||
+ | Function |
||
+ | : $f=-1 |
||
+ | +3t |
||
+ | -3t^2 |
||
+ | +\frac{3}{4}t^3 |
||
+ | +\frac{3}{10}t^4 |
||
+ | +\frac{9}{160}t^5 |
||
+ | - \frac{3}{70}t^6 |
||
+ | -\frac{1251}{22400} t^7 |
||
+ | -\frac{9}{280} t^8$ |
||
+ | : where $t= \sqrt{\frac{2}{9}(z+2-\mathrm{i})}$ |
||
+ | is shown in the $x\!=\!\Re(z)$, $y\!=\!\Im(z)$ plane with<br> |
||
+ | lines $u\!=\!\Re(f)=\mathrm{const}$ and |
||
+ | lines $v\!=\!\Re(f)=\mathrm{const}$. |
||
+ | |||
+ | The shaded region indicates the range, where the precision of such an approximation of the [[Tania function]] is worse than 3. |
||
+ | The precision is defined as |
||
+ | : $ \displaystyle |
||
+ | \mathrm{precision}(z)= |
||
+ | -\lg\Big( |
||
+ | \frac |
||
+ | {|f-\mathrm{Tania}(z)|} |
||
+ | {|f|+|\mathrm{Tania}(z)|} |
||
+ | \Big)$ |
||
+ | In the white spot, the approximation returns at least 3 significant figures. |
||
+ | |||
+ | ==Generators== |
||
+ | |||
+ | ==Common header for the [[C++]] codes== |
||
+ | For compilation of the [[C++]] codes below, the files |
||
+ | [[conto.cin]] and [[ado.cin]] should be loaded. Also, the header below should be included: |
||
+ | |||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | |||
+ | z_type ArcTania(z_type z) {return z + log(z) - 1. ;} |
||
+ | z_type ArcTaniap(z_type z) {return 1. + 1./z ;} |
||
+ | |||
+ | z_type TaniaTay(z_type z) { int n; z_type s; |
||
+ | s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456. |
||
+ | //+z*(7.3/4128768.) //some reserve term |
||
+ | )))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
+ | |||
+ | z_type TaniaNega(z_type z){int n;z_type s=exp(z-exp(z)+1.); |
||
+ | DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
+ | |||
+ | z_type TaniaNeg(z_type z){int n; z_type e=exp(1.+z); |
||
+ | return e*(1.+e*(-1.+e*(1.5+e*(-3.5 )))); } |
||
+ | |||
+ | z_type TaniaBig(z_type z){ int n; |
||
+ | z_type t=1.+z; |
||
+ | z_type L=log(t); |
||
+ | z_type x=L/t; |
||
+ | z_type m=1./L; |
||
+ | z_type s = t-L + x*(1. + x*( .5-m + x*( 1./3. + m*(-1.5+m) +x*( .25 +m*(-11./6.+m*(3.-m)) |
||
+ | // +x*(.2 +m*(-25./12 +m*(35./6. +m*(-5. +m)))) //reserve term for the testing |
||
+ | )))); |
||
+ | //DO(n,2) s+=(z-ArcTania(s))/ArcTaniap(s); |
||
+ | return s ; } |
||
+ | |||
+ | z_type TaniaBig0(z_type z){int n;z_type L=log(z), s=z-L+1.; |
||
+ | s-=(1.-L)/z; return s ; |
||
+ | DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); |
||
+ | } |
||
+ | |||
+ | z_type TaniaS(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); |
||
+ | s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. //+t*(-.9/28.) |
||
+ | ))))))); |
||
+ | DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
+ | |||
+ | z_type TaniaSingu(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); |
||
+ | s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. +t*(-.9/28.) |
||
+ | )))))));} |
||
+ | |||
+ | z_type Tania(z_type z){ z_type t; |
||
+ | if( fabs(Im(z))< M_PI && Re(z)<-2.51) return TaniaNega(z); |
||
+ | if( abs(z)>7. || Re(z)>3.8 ) return TaniaBig0(z); |
||
+ | if( Im(z) > .7 ) return TaniaS(z); |
||
+ | if( Im(z) < -.7) return conj(TaniaS(conj(z))); |
||
+ | return TaniaTay(z); |
||
+ | } |
||
+ | |||
+ | |||
+ | ==[[C++]] generator of shading== |
||
+ | |||
+ | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | int M=160,M1=M+1; |
||
+ | int N=161,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("taniasinguD2.eps","w");ado(o,162,162); |
||
+ | fprintf(o,"81 81 translate\n 10 10 scale\n"); |
||
+ | DO(m,M1)X[m]=-8.+.1*(m); |
||
+ | DO(n,N1)Y[n]=-8.+.1*(n); |
||
+ | |||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | c=TaniaSingu(z); |
||
+ | d=Tania(z); |
||
+ | // c=ArcTania(c); |
||
+ | p=-log( abs(c-d) / (abs(c)+abs(d)) )/log(10.) ; |
||
+ | //p=Re(c);q=Im(c); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | }} |
||
+ | |||
+ | M(-8.1,-8.1)L(-8.1,8.1)L(8.1,8.1)L(8.1,-8.1) |
||
+ | fprintf(o,"C 1 .9 .9 RGB F\n"); |
||
+ | |||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=6;q=.5; |
||
+ | conto(o,g,w,v,X,Y,M,N, (3),-p,p); fprintf(o,"C 1 1 1 RGB F\n"); |
||
+ | for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} |
||
+ | for(n=-8;n<9;n++){ M( -8,n)L(8,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | fprintf(o,".07 W 1 .5 0 RGB S\n"); |
||
+ | y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | fprintf(o,".07 W 0 .5 1 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf taniasinguD2.eps"); |
||
+ | system( "open taniasinguD2.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | |||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | |||
+ | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | int M=160,M1=M+1; |
||
+ | int N=161,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("taniasingumap1.eps","w");ado(o,162,162); |
||
+ | fprintf(o,"81 81 translate\n 10 10 scale\n"); |
||
+ | DO(m,M1) X[m]=-8.+.1*(m); |
||
+ | DO(n,80)Y[n]=-8.+.1*n; |
||
+ | Y[80]=-.03; |
||
+ | Y[81]= .03; |
||
+ | for(n=82;n<N1;n++) Y[n]=-8.+.1*(n-1.); |
||
+ | for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} |
||
+ | for(n=-8;n<9;n++){ M( -8,n)L(8,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | c=TaniaSingu(z); p=Re(c);q=Im(c); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | }} |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=.6;q=.5; |
||
+ | for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".05 W .9 0 0 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 .9 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".05 W .6 0 .6 RGB S\n"); |
||
+ | for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 0 RGB S\n"); |
||
+ | y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | fprintf(o,".07 W 1 .5 0 RGB S\n"); |
||
+ | y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | fprintf(o,".07 W 0 .5 1 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf taniasingumap1.eps"); |
||
+ | system( "open taniasingumap1.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | |||
+ | [[Category:Tania function]] |
||
+ | [[Category:Complex maps]] |
||
+ | [[Category:Approximations]] |
Revision as of 09:39, 21 June 2013
Complex map of the approximation of the Tania function with the truncated series of the expansion at the branch point $-2\!+\!\mathrm i$.
Function
- $f=-1
+3t -3t^2 +\frac{3}{4}t^3 +\frac{3}{10}t^4 +\frac{9}{160}t^5 - \frac{3}{70}t^6 -\frac{1251}{22400} t^7 -\frac{9}{280} t^8$
- where $t= \sqrt{\frac{2}{9}(z+2-\mathrm{i})}$
is shown in the $x\!=\!\Re(z)$, $y\!=\!\Im(z)$ plane with
lines $u\!=\!\Re(f)=\mathrm{const}$ and
lines $v\!=\!\Re(f)=\mathrm{const}$.
The shaded region indicates the range, where the precision of such an approximation of the Tania function is worse than 3. The precision is defined as
- $ \displaystyle
\mathrm{precision}(z)= -\lg\Big( \frac
Generators
Common header for the C++ codes
For compilation of the C++ codes below, the files conto.cin and ado.cin should be loaded. Also, the header below should be included:
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin"
z_type ArcTania(z_type z) {return z + log(z) - 1. ;} z_type ArcTaniap(z_type z) {return 1. + 1./z ;}
z_type TaniaTay(z_type z) { int n; z_type s; s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456. //+z*(7.3/4128768.) //some reserve term )))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaNega(z_type z){int n;z_type s=exp(z-exp(z)+1.); DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaNeg(z_type z){int n; z_type e=exp(1.+z); return e*(1.+e*(-1.+e*(1.5+e*(-3.5 )))); } z_type TaniaBig(z_type z){ int n; z_type t=1.+z; z_type L=log(t); z_type x=L/t; z_type m=1./L; z_type s = t-L + x*(1. + x*( .5-m + x*( 1./3. + m*(-1.5+m) +x*( .25 +m*(-11./6.+m*(3.-m)) // +x*(.2 +m*(-25./12 +m*(35./6. +m*(-5. +m)))) //reserve term for the testing )))); //DO(n,2) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaBig0(z_type z){int n;z_type L=log(z), s=z-L+1.; s-=(1.-L)/z; return s ; DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); }
z_type TaniaS(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. //+t*(-.9/28.) ))))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaSingu(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. +t*(-.9/28.) )))))));}
z_type Tania(z_type z){ z_type t; if( fabs(Im(z))< M_PI && Re(z)<-2.51) return TaniaNega(z); if( abs(z)>7. || Re(z)>3.8 ) return TaniaBig0(z); if( Im(z) > .7 ) return TaniaS(z); if( Im(z) < -.7) return conj(TaniaS(conj(z))); return TaniaTay(z); }
C++ generator of shading
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=160,M1=M+1; int N=161,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("taniasinguD2.eps","w");ado(o,162,162); fprintf(o,"81 81 translate\n 10 10 scale\n"); DO(m,M1)X[m]=-8.+.1*(m); DO(n,N1)Y[n]=-8.+.1*(n);
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); c=TaniaSingu(z); d=Tania(z);
// c=ArcTania(c);
p=-log( abs(c-d) / (abs(c)+abs(d)) )/log(10.) ; //p=Re(c);q=Im(c); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} }}
M(-8.1,-8.1)L(-8.1,8.1)L(8.1,8.1)L(8.1,-8.1) fprintf(o,"C 1 .9 .9 RGB F\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=6;q=.5; conto(o,g,w,v,X,Y,M,N, (3),-p,p); fprintf(o,"C 1 1 1 RGB F\n"); for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} for(n=-8;n<9;n++){ M( -8,n)L(8,n)} fprintf(o,".008 W 0 0 0 RGB S\n");
y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} fprintf(o,".07 W 1 .5 0 RGB S\n"); y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} fprintf(o,".07 W 0 .5 1 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf taniasinguD2.eps"); system( "open taniasinguD2.pdf"); getchar(); system("killall Preview"); }
C++ generator of curves
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=160,M1=M+1; int N=161,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("taniasingumap1.eps","w");ado(o,162,162); fprintf(o,"81 81 translate\n 10 10 scale\n"); DO(m,M1) X[m]=-8.+.1*(m); DO(n,80)Y[n]=-8.+.1*n; Y[80]=-.03; Y[81]= .03; for(n=82;n<N1;n++) Y[n]=-8.+.1*(n-1.); for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} for(n=-8;n<9;n++){ M( -8,n)L(8,n)} fprintf(o,".008 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); c=TaniaSingu(z); p=Re(c);q=Im(c); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} }} fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=.6;q=.5; for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".05 W .9 0 0 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 .9 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".05 W .6 0 .6 RGB S\n"); for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 0 RGB S\n"); y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} fprintf(o,".07 W 1 .5 0 RGB S\n"); y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} fprintf(o,".07 W 0 .5 1 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf taniasingumap1.eps"); system( "open taniasingumap1.pdf"); getchar(); system("killall Preview"); }
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 851 × 841 (615 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: