Difference between revisions of "File:Sfaczoo300.png"
(Importing image file) |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | {{oq|Sfaczoo300.png|Original file (1,142 × 453 pixels, file size: 302 KB, MIME type: image/png)}} |
||
− | Importing image file |
||
+ | |||
+ | Zoom-in of the [[complex map]] of [[SuperFactorial]] |
||
+ | |||
+ | Copyleft 1011 by Dmitrii Kouznetsov |
||
+ | |||
+ | ==C++ generator of curves== |
||
+ | Sorry, have misplaced the original generator. I load the code that does almost the same picture. |
||
+ | |||
+ | Files |
||
+ | [[SuperFactorial.cin]] |
||
+ | [[ado.cin]] |
||
+ | [[conto.cin]] |
||
+ | should be loaded to the working directory in order to compile the [[C++]] code below: |
||
+ | <pre> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "fac.cin" |
||
+ | //#include "sinc.cin" |
||
+ | #include "facp.cin" |
||
+ | #include "afacc.cin" |
||
+ | #include "superfactorial.cin" |
||
+ | #include "conto.cin" |
||
+ | |||
+ | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | int M=551,M1=M+1; |
||
+ | int N=221,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("SuperFacZoom.eps","w");ado(o,552,222); |
||
+ | fprintf(o,"1 1 translate\n 100 100 scale\n"); |
||
+ | DO(m,M1)X[m]=.01*(m-.5); |
||
+ | DO(n,N1)Y[n]=.01*(n-.5); |
||
+ | |||
+ | for(m=0;m<6;m++){M(m,0)L(m,2)} |
||
+ | for(n=0;n<3;n++){M( 0,n)L(5,n)} |
||
+ | fprintf(o,".004 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | // c=afacc(z); |
||
+ | // c=fac(z); |
||
+ | c=superfac(z); |
||
+ | // p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.; |
||
+ | p=Re(c);q=Im(c); |
||
+ | if(p>-20 && p<20 && |
||
+ | // (fabs(y)>.034 ||x>-.9 ||fabs(x-int(x))>1.e-3) && |
||
+ | q>-20 && q<20 && fabs(q)> 1.e-16 |
||
+ | ) |
||
+ | {g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | }} |
||
+ | //fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.8;q=.7; |
||
+ | |||
+ | fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.4;q=.8; |
||
+ | for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".004 W 0 .5 0 RGB S\n"); |
||
+ | for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".004 W .8 0 0 RGB S\n"); |
||
+ | for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".004 W 0 0 .8 RGB S\n"); |
||
+ | for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".01 W .8 0 0 RGB S\n"); |
||
+ | for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".01 W 0 0 .8 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-9,9); fprintf(o,".01 W .5 0 .5 RGB S\n"); |
||
+ | for(m=-14;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-9,9); fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | for(m=1;m<17;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | //#include"plofu.cin" |
||
+ | // x=0.8856031944; |
||
+ | conto(o,g,w,v,X,Y,M,N,0.8856031944,-p,p); fprintf(o,".004 W .2 .2 0 RGB S\n"); |
||
+ | /* |
||
+ | M(x,-8)L(x,8) fprintf(o,"0 setlinejoin 0 setlinecap 0.004 W 0 0 0 RGB S\n"); |
||
+ | M(x,0)L(-8.1,0) fprintf(o," .05 W 1 1 1 RGB S\n"); |
||
+ | DO(m,23){ M(x-.4*m,0)L(x-.4*(m+.5),0);} fprintf(o,".09 W .3 .3 0 RGB S\n"); |
||
+ | //M(x,0)L(-8.1,0) fprintf(o,"[.19 .21]0 setdash .05 W 0 0 0 RGB S\n"); |
||
+ | // May it be, that, some printers do not interpret well the dashing ? |
||
+ | */ |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf SuperFacZoom.eps"); |
||
+ | system( "open SuperFacZoom.pdf"); //for LINUX |
||
+ | // getchar(); system("killall Preview");//for mac |
||
+ | } |
||
+ | </pre> |
||
+ | |||
+ | ==Generator of labels== |
||
+ | |||
+ | Sorry, the generator of labels is lost |
||
+ | |||
+ | ==References== |
||
+ | {{ref}} |
||
+ | http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1<br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010superfae.pdf reprint, English version<br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010superfar.pdf reprint, Russian version<br> |
||
+ | D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Russian version: p.8-14) |
||
+ | |||
+ | {{fer}} |
||
+ | |||
+ | ==Keywords== |
||
+ | «[[SuFac]]», |
||
+ | «[[SuperFactorial]]», |
||
+ | «[[]]», |
||
+ | |||
+ | [[Category:Book]] |
||
+ | [[Category:BookMap]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:SuFac]] |
||
+ | [[Category:SuperFactorial]] |
||
+ | [[Category:Complex maps]] |
||
+ | [[Category:SuperFunctions]] |
Latest revision as of 00:12, 29 February 2024
Zoom-in of the complex map of SuperFactorial
Copyleft 1011 by Dmitrii Kouznetsov
C++ generator of curves
Sorry, have misplaced the original generator. I load the code that does almost the same picture.
Files SuperFactorial.cin ado.cin conto.cin should be loaded to the working directory in order to compile the C++ code below:
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "fac.cin" //#include "sinc.cin" #include "facp.cin" #include "afacc.cin" #include "superfactorial.cin" #include "conto.cin" main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; int M=551,M1=M+1; int N=221,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("SuperFacZoom.eps","w");ado(o,552,222); fprintf(o,"1 1 translate\n 100 100 scale\n"); DO(m,M1)X[m]=.01*(m-.5); DO(n,N1)Y[n]=.01*(n-.5); for(m=0;m<6;m++){M(m,0)L(m,2)} for(n=0;n<3;n++){M( 0,n)L(5,n)} fprintf(o,".004 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); // c=afacc(z); // c=fac(z); c=superfac(z); // p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.; p=Re(c);q=Im(c); if(p>-20 && p<20 && // (fabs(y)>.034 ||x>-.9 ||fabs(x-int(x))>1.e-3) && q>-20 && q<20 && fabs(q)> 1.e-16 ) {g[m*N1+n]=p;f[m*N1+n]=q;} }} //fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.8;q=.7; fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.4;q=.8; for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".004 W 0 .5 0 RGB S\n"); for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".004 W .8 0 0 RGB S\n"); for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".004 W 0 0 .8 RGB S\n"); for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".01 W .8 0 0 RGB S\n"); for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".01 W 0 0 .8 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-9,9); fprintf(o,".01 W .5 0 .5 RGB S\n"); for(m=-14;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n"); m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-9,9); fprintf(o,".01 W 0 0 0 RGB S\n"); for(m=1;m<17;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n"); //#include"plofu.cin" // x=0.8856031944; conto(o,g,w,v,X,Y,M,N,0.8856031944,-p,p); fprintf(o,".004 W .2 .2 0 RGB S\n"); /* M(x,-8)L(x,8) fprintf(o,"0 setlinejoin 0 setlinecap 0.004 W 0 0 0 RGB S\n"); M(x,0)L(-8.1,0) fprintf(o," .05 W 1 1 1 RGB S\n"); DO(m,23){ M(x-.4*m,0)L(x-.4*(m+.5),0);} fprintf(o,".09 W .3 .3 0 RGB S\n"); //M(x,0)L(-8.1,0) fprintf(o,"[.19 .21]0 setdash .05 W 0 0 0 RGB S\n"); // May it be, that, some printers do not interpret well the dashing ? */ fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf SuperFacZoom.eps"); system( "open SuperFacZoom.pdf"); //for LINUX // getchar(); system("killall Preview");//for mac }
Generator of labels
Sorry, the generator of labels is lost
References
http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1
http://mizugadro.mydns.jp/PAPERS/2010superfae.pdf reprint, English version
http://mizugadro.mydns.jp/PAPERS/2010superfar.pdf reprint, Russian version
D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Russian version: p.8-14)
Keywords
«SuFac», «SuperFactorial», «[[]]»,
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 1,142 × 453 (302 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: