Difference between revisions of "File:CoshcplotT.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | Explicit plot of functions [[Coshc]] and [[Coshc']] for positive values of the argument. |
||
− | Importing image file |
||
+ | |||
+ | '''Coshc''' or coshc is elementary function, defined with |
||
+ | : $\displaystyle \mathrm{coshc}(z)=\frac{\cosh(z)}{z}$ |
||
+ | |||
+ | where $\cosh$ is hyperbolic cosine, id est, |
||
+ | : $\cosh(z)=(\mathrm e^z+\mathrm e^{-z})/2$ |
||
+ | |||
+ | The derivative of coshc, id est, cosec', can be expressed with |
||
+ | : $ \cosh'(z)=\frac{\sinh(z)}{z}-\frac{\cosh(z)}{z^2} = \mathrm{sinhc}(z) - \mathrm{coshc}(z)/z$ |
||
+ | Functions $~y\!=\!\mathrm{coshc}(x)~$ and $~y\!=\!\mathrm{coshc}'(x)~$ are shown in the $x$,$y$ plane. |
||
+ | |||
+ | Coshc is related with the [[cosc]] function with the simple relations |
||
+ | : $\displaystyle \mathrm{coshc}(z) = \mathrm i ~ \mathrm{cosc} ( \mathrm i z )$ |
||
+ | : $\displaystyle \mathrm{cosc}(z) = \mathrm i ~ \mathrm{coshc} ( \mathrm i z )$ |
||
+ | quite analogous to the relation between [[cos]] and [[cosh]]. |
||
+ | |||
+ | Minimum of $\mathrm{coshc}(x)$ is realized at |
||
+ | : $x=H\approx 1.199678640257734 ~$ ; $~\mathrm{coshc}'(H)=0$. |
||
+ | : $J=\mathrm{coshc}(H) \approx 1.50887956153832~$ . |
||
+ | These values are marked in the fugure. |
||
+ | |||
+ | ==C++ generator of curvec== |
||
+ | File [[ado.cin]] should be loaded in the working directory for the compilation of the [[C++]] code below: |
||
+ | |||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "ado.cin" |
||
+ | z_type Cih(z_type z) {return cosh(z)/z ;} |
||
+ | z_type Cihp(z_type z) {return (sinh(z)-cosh(z)/z)/z ;} |
||
+ | DB H=1.199678640257734; |
||
+ | DB J=1.50887956153832; |
||
+ | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x, 0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x, 0.+y); |
||
+ | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | FILE *o;o=fopen("coshcplot.eps","w");ado(o,220,420); |
||
+ | fprintf(o,"10 210 translate\n 100 100 scale\n"); |
||
+ | M(0,-2)L(0,2) M(0,0)L(2,0) |
||
+ | fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | M(1,-2)L(1,2) |
||
+ | M(2,-2)L(2,2) |
||
+ | M(0, 2)L(2, 2) |
||
+ | M(0, 1)L(2, 1) |
||
+ | M(0,-1)L(2,-1) |
||
+ | M(0,-2)L(2,-2) |
||
+ | M(H,0)L(H,J)L(0,J) |
||
+ | fprintf(o,".004 W 0 0 0 RGB S\n"); |
||
+ | DO(m,148){x=.57+.01*m;y=Re(Cih(x));if(m==0)M(x,y)else L(x,y);} |
||
+ | fprintf(o,".014 W 0 0 0 RGB S\n"); |
||
+ | DO(m,142){x=.62+.01*m;y=Re(Cihp(x));if(m==0)M(x,y)else L(x,y);} |
||
+ | fprintf(o,".02 W 1 0 0 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf coshcplot.eps"); |
||
+ | system( "open coshcplot.pdf"); |
||
+ | getchar(); system("killall Preview");//for mac |
||
+ | } |
||
+ | |||
+ | ==Latex generator of labels== |
||
+ | File [[coshcplot.pdf]] should be generated with the [[C++]] code above in order to compile the [[Latex]] document below: |
||
+ | |||
+ | <nowiki> |
||
+ | \documentclass[12pt]{article} %<br> |
||
+ | \include{geometry} %<br> |
||
+ | \paperwidth 224pt %<br> |
||
+ | \paperheight 410pt %<br> |
||
+ | \textwidth 300pt %<br> |
||
+ | \textheight 600pt %<br> |
||
+ | \topmargin -114pt %<br> |
||
+ | \oddsidemargin -70pt %<br> |
||
+ | \pagestyle{empty} %<br> |
||
+ | \usepackage{graphics} %<br> |
||
+ | \usepackage{rotating} %<br> |
||
+ | \newcommand \sx \scalebox %<br> |
||
+ | \newcommand \rot {\begin{rotate}} %<br> |
||
+ | \newcommand \ero {\end{rotate}} %<br> |
||
+ | \begin{document} %<br> |
||
+ | \parindent 0pt %<br> |
||
+ | \begin{picture}(240,420) %<br> |
||
+ | \put(8,0){\includegraphics{coshcplot}} %<br> |
||
+ | \put(4,404){\sx{1.8}{$y$}} %<br> |
||
+ | \put(4,355){\sx{1.8}{$J$}} %<br> |
||
+ | \put(4,304){\sx{1.8}{$1$}} %<br> |
||
+ | \put(4,204){\sx{1.8}{$0$}} %<br> |
||
+ | \put(-4,104){\sx{1.8}{$-\!1$}} %<br> |
||
+ | \put( 13,192){\sx{1.8}{$0$}} %<br> |
||
+ | \put(114,192){\sx{1.8}{$1$}} %<br> |
||
+ | \put(131,192){\sx{1.8}{$H$}} %<br> |
||
+ | \put(203,194){\sx{1.9}{$x$}} %<br> |
||
+ | %\put(-4,5){\sx{1.8}{$-2$}} |
||
+ | \put(150,341){\sx{1.7}{\rot{27}{$\mathrm{Coshc}(x)$}\ero}} %<br> |
||
+ | \put(152,234){\sx{1.7}{\rot{47}{$\mathrm{Coshc}'(x)$}\ero}} %<br> |
||
+ | \end{picture} %<br> |
||
+ | \end{document} %<br> |
||
+ | </nowiki> |
||
+ | Copyleft 2012 by Dmitrii Kouznetsov |
||
+ | |||
+ | [[Category:Coshc]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:Elementary function]] |
Latest revision as of 09:41, 21 June 2013
Explicit plot of functions Coshc and Coshc' for positive values of the argument.
Coshc or coshc is elementary function, defined with
- $\displaystyle \mathrm{coshc}(z)=\frac{\cosh(z)}{z}$
where $\cosh$ is hyperbolic cosine, id est,
- $\cosh(z)=(\mathrm e^z+\mathrm e^{-z})/2$
The derivative of coshc, id est, cosec', can be expressed with
- $ \cosh'(z)=\frac{\sinh(z)}{z}-\frac{\cosh(z)}{z^2} = \mathrm{sinhc}(z) - \mathrm{coshc}(z)/z$
Functions $~y\!=\!\mathrm{coshc}(x)~$ and $~y\!=\!\mathrm{coshc}'(x)~$ are shown in the $x$,$y$ plane.
Coshc is related with the cosc function with the simple relations
- $\displaystyle \mathrm{coshc}(z) = \mathrm i ~ \mathrm{cosc} ( \mathrm i z )$
- $\displaystyle \mathrm{cosc}(z) = \mathrm i ~ \mathrm{coshc} ( \mathrm i z )$
quite analogous to the relation between cos and cosh.
Minimum of $\mathrm{coshc}(x)$ is realized at
- $x=H\approx 1.199678640257734 ~$ ; $~\mathrm{coshc}'(H)=0$.
- $J=\mathrm{coshc}(H) \approx 1.50887956153832~$ .
These values are marked in the fugure.
C++ generator of curvec
File ado.cin should be loaded in the working directory for the compilation of the C++ code below:
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "ado.cin" z_type Cih(z_type z) {return cosh(z)/z ;} z_type Cihp(z_type z) {return (sinh(z)-cosh(z)/z)/z ;} DB H=1.199678640257734; DB J=1.50887956153832; #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x, 0.+y); #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x, 0.+y); main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; FILE *o;o=fopen("coshcplot.eps","w");ado(o,220,420); fprintf(o,"10 210 translate\n 100 100 scale\n"); M(0,-2)L(0,2) M(0,0)L(2,0) fprintf(o,".01 W 0 0 0 RGB S\n"); M(1,-2)L(1,2) M(2,-2)L(2,2) M(0, 2)L(2, 2) M(0, 1)L(2, 1) M(0,-1)L(2,-1) M(0,-2)L(2,-2) M(H,0)L(H,J)L(0,J) fprintf(o,".004 W 0 0 0 RGB S\n"); DO(m,148){x=.57+.01*m;y=Re(Cih(x));if(m==0)M(x,y)else L(x,y);} fprintf(o,".014 W 0 0 0 RGB S\n"); DO(m,142){x=.62+.01*m;y=Re(Cihp(x));if(m==0)M(x,y)else L(x,y);} fprintf(o,".02 W 1 0 0 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf coshcplot.eps"); system( "open coshcplot.pdf"); getchar(); system("killall Preview");//for mac }
Latex generator of labels
File coshcplot.pdf should be generated with the C++ code above in order to compile the Latex document below:
\documentclass[12pt]{article} %<br> \include{geometry} %<br> \paperwidth 224pt %<br> \paperheight 410pt %<br> \textwidth 300pt %<br> \textheight 600pt %<br> \topmargin -114pt %<br> \oddsidemargin -70pt %<br> \pagestyle{empty} %<br> \usepackage{graphics} %<br> \usepackage{rotating} %<br> \newcommand \sx \scalebox %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \begin{document} %<br> \parindent 0pt %<br> \begin{picture}(240,420) %<br> \put(8,0){\includegraphics{coshcplot}} %<br> \put(4,404){\sx{1.8}{$y$}} %<br> \put(4,355){\sx{1.8}{$J$}} %<br> \put(4,304){\sx{1.8}{$1$}} %<br> \put(4,204){\sx{1.8}{$0$}} %<br> \put(-4,104){\sx{1.8}{$-\!1$}} %<br> \put( 13,192){\sx{1.8}{$0$}} %<br> \put(114,192){\sx{1.8}{$1$}} %<br> \put(131,192){\sx{1.8}{$H$}} %<br> \put(203,194){\sx{1.9}{$x$}} %<br> %\put(-4,5){\sx{1.8}{$-2$}} \put(150,341){\sx{1.7}{\rot{27}{$\mathrm{Coshc}(x)$}\ero}} %<br> \put(152,234){\sx{1.7}{\rot{47}{$\mathrm{Coshc}'(x)$}\ero}} %<br> \end{picture} %<br> \end{document} %<br> Copyleft 2012 by Dmitrii Kouznetsov
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 465 × 851 (36 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: