Difference between revisions of "File:ExpIte4T.jpg"
($ -> \( ; description ; refs ; pre ; keywords) |
|||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| + | {{oq|ExpIte4T.jpg|Original file (1,673 × 1,673 pixels, file size: 901 KB, MIME type: image/jpeg)}} |
||
| ⚫ | |||
| + | Figure 15.4 from page 210 of book «[[Superfunctions]]» |
||
| ⚫ | |||
| + | <ref> |
||
| + | https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862 <br> |
||
| + | https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3 <br> |
||
| + | http://mizugadro.mydns.jp/BOOK/202.pdf Dmitrii Kouznetsov. [[Superfunctions]]. [[Lambert Academic Publishing]], 2020. |
||
| + | </ref>, 2020. |
||
| + | The same plot appears also as Рис.15.5 at page 212 of the Russian version «[[Суперфункции]]»<ref> |
||
| ⚫ | |||
| + | https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 |
||
| + | http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014. |
||
| + | </ref>, 2014. |
||
| + | |||
| ⚫ | |||
| + | |||
| ⚫ | |||
| + | |||
| ⚫ | |||
| + | |||
| + | In the next section, the C++ implementations of functions tet and ate are denoted with identifiers FSEXP and FSLOG. |
||
| + | |||
| + | For \(n=0.5\) the [[square root of exponential]] \(\varphi=\exp^{1/2}=\sqrt{\exp}\) |
||
| + | satisfies equation |
||
| + | |||
| + | \(\varphi(\varphi(z))=\mathrm e^z\) |
||
| + | |||
| + | This function had been announced in 1950 by [[Hellmuth Kneser]] <ref><small> |
||
| + | https://www.degruyterbrill.com/document/doi/10.1515/crll.1950.187.56/html?lang=en&srsltid=AfmBOoqxOfvSL-bZXBMeUQRPhPf7bwkxLKXimdmPxITaNH1Ume1l6KCo </small><br> |
||
| + | http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002175851&physid=phys63#navi [[Hellmuth Kneser]]. Reelle analytische Lösungen der Gleichung 𝜑(𝜑(𝑥))=e<sup>𝑥</sup> und verwandter Funktionalgleichungen. Journal für die reine und angewandte Mathematik / Zeitschriftenband (1950) / Artikel / 56 - 67 |
||
| + | </ref>, but only in 2009 an 2010 the efficient algorithms <ref> |
||
| + | https://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html |
||
| + | https://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D. Kouznetsov. Solution of F(x+1)=exp(F(x)) in complex z-plane. [[Mathematics of Computation]] 78, (2009), 1647-1670 |
||
| + | </ref><ref> |
||
| + | https://mizugadro.mydns.jp/PAPERS/2010vladie.pdf (English) |
||
| + | https://mizugadro.mydns.jp/PAPERS/2009vladir.pdf (Russian version) |
||
| + | D.Kouznetsov. Superexponential as special function. [[Vladikavkaz Mathematical Journal]], 2010, v.12, issue 2, p.31-45. |
||
| + | </ref> for the evaluation had been implemented and published. |
||
==[[C++]] generator of curves== |
==[[C++]] generator of curves== |
||
| Line 9: | Line 42: | ||
// Files [[ado.cin]], [[fsexp.cin]], [[fslog.cin]] |
// Files [[ado.cin]], [[fsexp.cin]], [[fslog.cin]] |
||
//should be loaded to the working directory in order to compile the code below. |
//should be loaded to the working directory in order to compile the code below. |
||
| + | <pre> |
||
| − | |||
#include <math.h> |
#include <math.h> |
||
#include <stdio.h> |
#include <stdio.h> |
||
| Line 62: | Line 95: | ||
getchar(); system("killall Preview"); // For macintosh |
getchar(); system("killall Preview"); // For macintosh |
||
} |
} |
||
| + | </pre> |
||
| − | |||
| − | |||
| − | |||
==[[Latex]] Generator of labels== |
==[[Latex]] Generator of labels== |
||
| − | %< |
+ | %<pre><br> |
| − | % file |
+ | % file ExpIte4.pdf should be generated with the code above in order to compile the [[Latex]] document below. %<br> |
% Copyleft 2012 by Dmitrii Kouznetsov <br> % |
% Copyleft 2012 by Dmitrii Kouznetsov <br> % |
||
\documentclass[12pt]{article} % <br> |
\documentclass[12pt]{article} % <br> |
||
| Line 136: | Line 167: | ||
\end{picture} % <br> |
\end{picture} % <br> |
||
\end{document} % <br> |
\end{document} % <br> |
||
| − | %</ |
+ | %</pre> |
| + | ==References== |
||
| + | {{ref}} |
||
| + | |||
| + | https://en.wikipedia.org/wiki/Hellmuth_Kneser |
||
| + | |||
| + | https://mathlog.info/articles/AiOseBZrh1UoBQevWKNa |
||
| + | 疑問:2回合成してe^xとなる関数は? |
||
| + | 関数的平方根, |
||
| + | 半指数関数 (2025) |
||
| + | |||
| + | https://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf Walter Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188. |
||
| + | |||
| + | https://reference.wolfram.com/mathematica/ref/Nest.html Nest, Wolfram Mathematica 9 Documentation center, 2013 |
||
| + | {{fer}} |
||
| + | |||
| + | ==Keywords== |
||
| + | |||
| + | «[[Abelfunction]]», |
||
| + | «[[Arctetration]]», |
||
| + | «[[Exponential]]», |
||
| + | «[[Natural tetration]]», |
||
| + | <b>«[[Iterate of exponential]]»</b>, |
||
| + | <b>«[[Iteration]]»</b>, |
||
| + | «[[Superfunction]]», |
||
| + | «[[Superfunctions]]», |
||
| + | «[[Tetration]]», |
||
| + | «[[ado.cin]]», |
||
| + | «[[fsexp.cin]]», |
||
| + | «[[fslog.cin]]», |
||
| + | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
[[Category:Exp]] |
[[Category:Exp]] |
||
| + | [[Category:Explicit plot]] |
||
| + | [[Category:Latex]] |
||
[[Category:Log]] |
[[Category:Log]] |
||
| + | [[Category:Iterate]] |
||
[[Category:Iteration]] |
[[Category:Iteration]] |
||
[[Category:Iteration of exp]] |
[[Category:Iteration of exp]] |
||
| Line 145: | Line 212: | ||
[[Category:Arctetration]] |
[[Category:Arctetration]] |
||
[[Category:Superfunction]] |
[[Category:Superfunction]] |
||
| + | [[Category:Superfunctions]] |
||
[[Category:Transfer function]] |
[[Category:Transfer function]] |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
Latest revision as of 22:38, 15 December 2025
Figure 15.4 from page 210 of book «Superfunctions» [1], 2020.
The same plot appears also as Рис.15.5 at page 212 of the Russian version «Суперфункции»[2], 2014.
The plot shows iterates of exponential: \(y\!=\!\exp^n(x)\) for various values of \(n\).
For non-integer values of \(n\), the evaluation is performed using the Natural tetration tet and the ArcTetration ate functions,
\(y\!=\!\exp^n(x)=\mathrm{tet}\Big(n+\mathrm{ate}(x)\Big)\)
In the next section, the C++ implementations of functions tet and ate are denoted with identifiers FSEXP and FSLOG.
For \(n=0.5\) the square root of exponential \(\varphi=\exp^{1/2}=\sqrt{\exp}\) satisfies equation
\(\varphi(\varphi(z))=\mathrm e^z\)
This function had been announced in 1950 by Hellmuth Kneser [3], but only in 2009 an 2010 the efficient algorithms [4][5] for the evaluation had been implemented and published.
C++ generator of curves
// Files ado.cin, fsexp.cin, fslog.cin //should be loaded to the working directory in order to compile the code below.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "Tania.cin" // need for LambertW
//#include "LambertW.cin" // need for AuZex
//#include "SuZex.cin"
//#include "AuZex.cin"
#include "fsexp.cin"
#include "fslog.cin"
// z_type tra(z_type z){ return exp(z)+z;}
// z_type F(z_type z){ return log(suzex(z));}
// z_type G(z_type z){ return auzex(exp(z));}
#include "ado.cin"
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; FILE *o;o=fopen("ExpIte4.eps","w"); ado(o,804,804);
fprintf(o,"402 402 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(n=-4;n<5;n++) {M(-4,n)L(4,n)}
for(m=-4;m<5;m++) {M(m,-4)L(m,4)}
// M(M_E,0)L(M_E,1) M(0,M_E)L(1,M_E)
fprintf(o,".004 W S\n");
// DO(m,700){x=.01 +.02*m; y=Re(LambertW(LambertW(x)));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 1 0 0 RGB S\n");
// DO(m,700){x=.01 +.02*m; y=Re(LambertW(x));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 1 .5 0 RGB S\n");
// M(0,0) L(12.03,12.03) fprintf(o,".04 W 0 1 0 RGB S\n");
DO(m,700){x=-4.02+.02*m; y=exp(x); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 0 1 0 RGB S\n");
DO(m,700){x=-4.02+.02*m; y=exp(exp(x)); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 0 1 0 RGB S\n");
DO(m,700){x=-4.02+.02*m; y=exp(exp(exp(x)));if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 0 1 0 RGB S\n");
DO(m,700){y=-4.02+.02*m; x=exp(y); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 1 0 1 RGB S\n");
DO(m,700){y=-4.02+.02*m; x=exp(exp(y)); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 1 0 1 RGB S\n");
DO(m,700){y=-4.02+.02*m; x=exp(exp(exp(y)));if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 1 0 1 RGB S\n");
for(n=0;n<34;n+=1) {DO(m,700){x=-4.01 +.02*m; y=Re(FSLOG(x)); y=Re(FSEXP(.1*n+y)); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;}}
for(n=-33;n<0;n+=1){t=Re(FSEXP( FSLOG(-4.)-.1*n));
DO(m,700){x=t +.02*m; y=Re(FSLOG(x)); y=Re(FSEXP(.1*n+y)); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;}}
fprintf(o,".01 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o);
system("epstopdf ExpIte4.eps");
system( "open ExpIte4.pdf"); //for macintosh
getchar(); system("killall Preview"); // For macintosh
}
Latex Generator of labels
%<br>
% file ExpIte4.pdf should be generated with the code above in order to compile the [[Latex]] document below. %<br>
% Copyleft 2012 by Dmitrii Kouznetsov <br> %
\documentclass[12pt]{article} % <br>
\usepackage{geometry} % <br>
\usepackage{graphicx} % <br>
\usepackage{rotating} % <br>
\paperwidth 806pt % <br>
\paperheight 806pt % <br>
\topmargin -105pt % <br>
\oddsidemargin -73pt % <br>
\textwidth 1100pt % <br>
\textheight 1100pt % <br>
\pagestyle {empty} % <br>
\newcommand \sx {\scalebox} % <br>
\newcommand \rot {\begin{rotate}} % <br>
\newcommand \ero {\end{rotate}} % <br>
\newcommand \ing {\includegraphics} % <br>
\parindent 0pt% <br>
\pagestyle{empty} % <br>
\begin{document} % <br>
\begin{picture}(802,802) % <br>
%\put(10,10){\ing{PowPlo}} % <br>
%\put(0,0){\ing{TraItu3}} % <br>
\put(0,0){\ing{ExpIte4}} % <br>
\put(411,788){\sx{3}{$y$}} % <br>
\put(411,693.6){\sx{2.9}{$3$}} % <br>
\put(411,593.4){\sx{2.9}{$2$}} % <br>
\put(411,493.2){\sx{2.9}{$1$}} % <br>
\put(411,393){\sx{2.9}{$0$}} % <br>
\put(407,292.8){\sx{2.9}{$-1$}} % <br>
\put(407,192.6){\sx{2.9}{$-2$}} % <br>
\put(407,092.4){\sx{2.9}{$-3$}} % <br>
% <br>
\put(081,408){\sx{2.9}{$-3$}} % <br>
\put(181,408){\sx{2.9}{$-2$}} % <br>
\put(281,408){\sx{2.9}{$-1$}} % <br>
\put(396,408){\sx{2.9}{$0$}} % <br>
\put(497,408){\sx{2.9}{$1$}} % <br>
\put(597,408){\sx{2.9}{$2$}} % <br>
\put(697,408){\sx{2.9}{$3$}} % <br>
\put(787,408){\sx{3}{$x$}} % <br>
% <br>
\put(6,748){\sx{3}{\rot{4}$n\!=\!3.2$\ero}} % <br>
\put(6,708){\sx{3}{\rot{3}$n\!=\!3.1$\ero}} % <br>
\put(6,675){\sx{3}{\rot{3}$n\!=\!3$\ero}} % <br>
\put(5,643){\sx{3}{\rot{3}$n\!=\!2.9$\ero}} % <br>
\put(6,345){\sx{3}{\rot{1}$n\!=\!0.6$\ero}} % <br>
%
\put(7,308){\sx{3}{\rot{4}$n\!=\!0.4$\ero}} % <br>
\put(7,280){\sx{3}{\rot{5}$n\!=\!0.3$\ero}} % <br>
\put(8,242){\sx{3}{\rot{9}$n\!=\!0.2$\ero}} % <br>
\put(9,185){\sx{3}{\rot{11}$n\!=\!0.1$\ero}} % <br>
% <br>
\put(50,36){\sx{3}{\rot{45}$n\!=\!0$\ero}} % <br>
% <br>
\put(202,5){\sx{3}{\rot{76}$n\!=\!-0.1$\ero}} % <br>
\put(263,5){\sx{3}{\rot{82}$n\!=\!-0.2$\ero}} % <br>
\put(299,5){\sx{3}{\rot{84}$n\!=\!-0.3$\ero}} % <br>
\put(691,5){\sx{3}{\rot{84}$n\!=\!-3$\ero}} % <br>
\put(724,5){\sx{3}{\rot{83}$n\!=\!-3.1$\ero}} % <br>
\put(764,5){\sx{3}{\rot{82}$n\!=\!-3.2$\ero}} % <br>
% <br>
\put(480,600){\sx{3.6}{\rot{69}$y\!=\!\exp(x)$\ero}} % <br>
\put(641,630){\sx{3.4}{\rot{44}$y\!=\!x$\ero}} % <br>
\put(650,484){\sx{3.6}{\rot{19}$y\!=\!\ln(x)$\ero}} % <br>
\end{picture} % <br>
\end{document} % <br>
%
References
- ↑
https://www.amazon.co.jp/-/en/Dmitrii-Kouznetsov/dp/6202672862
https://www.morebooks.de/shop-ui/shop/product/978-620-2-67286-3
http://mizugadro.mydns.jp/BOOK/202.pdf Dmitrii Kouznetsov. Superfunctions. Lambert Academic Publishing, 2020. - ↑ https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014.
- ↑
https://www.degruyterbrill.com/document/doi/10.1515/crll.1950.187.56/html?lang=en&srsltid=AfmBOoqxOfvSL-bZXBMeUQRPhPf7bwkxLKXimdmPxITaNH1Ume1l6KCo
http://www.digizeitschriften.de/dms/img/?PID=GDZPPN002175851&physid=phys63#navi Hellmuth Kneser. Reelle analytische Lösungen der Gleichung 𝜑(𝜑(𝑥))=e𝑥 und verwandter Funktionalgleichungen. Journal für die reine und angewandte Mathematik / Zeitschriftenband (1950) / Artikel / 56 - 67 - ↑ https://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html https://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D. Kouznetsov. Solution of F(x+1)=exp(F(x)) in complex z-plane. Mathematics of Computation 78, (2009), 1647-1670
- ↑ https://mizugadro.mydns.jp/PAPERS/2010vladie.pdf (English) https://mizugadro.mydns.jp/PAPERS/2009vladir.pdf (Russian version) D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.
https://en.wikipedia.org/wiki/Hellmuth_Kneser
https://mathlog.info/articles/AiOseBZrh1UoBQevWKNa 疑問:2回合成してe^xとなる関数は? 関数的平方根, 半指数関数 (2025)
https://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf Walter Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188.
https://reference.wolfram.com/mathematica/ref/Nest.html Nest, Wolfram Mathematica 9 Documentation center, 2013
Keywords
«Abelfunction», «Arctetration», «Exponential», «Natural tetration», «Iterate of exponential», «Iteration», «Superfunction», «Superfunctions», «Tetration», «ado.cin», «fsexp.cin», «fslog.cin»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 1,673 × 1,673 (901 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 3 pages use this file: