Difference between revisions of "File:Acosc1plotT.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | Plot of [[Acosc1]], which is first branch of inverse function of [[cosc]]$(x)=\cos(x)/x$. |
||
− | Importing image file |
||
+ | |||
+ | ==Description== |
||
+ | |||
+ | : $y=\text{acosc}_1(x)$ is shown with thick red line. |
||
+ | |||
+ | The two asymptotics are shown with thin lines: |
||
+ | |||
+ | : $\displaystyle y= \mathrm R_3(x) = |
||
+ | \mathrm{Sazae}_1 - \sqrt{ \frac{2}{\mathrm{Tarao}_1 } (\mathrm{Tarao}_1\!-\!x) } + \frac{2\, (\mathrm{Tarao}_1 \!-\! x )}{3~ \mathrm{Sazae}_1~ \mathrm{Tarao}_1}$ |
||
+ | which approximates the function in vicinity of $\mathrm{Tarao}_1$, |
||
+ | and |
||
+ | : $\displaystyle y= \mathrm L_3(x) = |
||
+ | \mathrm{Sazae}_0 + |
||
+ | \sqrt{ |
||
+ | \frac{-2}{\mathrm{Tarao}_0} |
||
+ | (x-\mathrm{Tarao}_0) |
||
+ | } |
||
+ | - \frac |
||
+ | {2\, (x\!-\!\mathrm{Tarao}_0)} |
||
+ | {3~ \mathrm{Tarao}_0 ~ \mathrm{Sazae}_0} |
||
+ | $ |
||
+ | which aprocimates the function in vicinity of [[Tarao]]$=\mathrm{Tarao}_0$. |
||
+ | These asymptotics are used in the numerical implementation [[acosc1]] available at [[acosc1.cin]]. |
||
+ | |||
+ | At the bottom part of the figure, function [[ArcCosc]]=acosc is also plotted and compared to its approximation |
||
+ | |||
+ | :$\displaystyle y=\mathrm D_3 (x)= |
||
+ | \mathrm{Sazae}_0 - |
||
+ | \sqrt{ |
||
+ | \frac{-2}{\mathrm{Tarao}_0} |
||
+ | (x-\mathrm{Tarao}_0) |
||
+ | } |
||
+ | - \frac |
||
+ | {2\, (x\!-\!\mathrm{Tarao}_0)} |
||
+ | {3~ \mathrm{Tarao}_0 ~ \mathrm{Sazae}_0} |
||
+ | $ |
||
+ | |||
+ | Constants [[Sazae]] are positive solutions $x$ of equation $\text{cosc}'(x)=0$ . |
||
+ | |||
+ | Constants [[Tarao]] are defined with |
||
+ | : $\mathrm{Tarao}_n=\mathrm{cosc}(\mathrm{Sazae}_n)$ |
||
+ | |||
+ | In particular, |
||
+ | : $\!\!\! \mathrm{Sazae}_0=~$[[Sazae]]$~ \approx 2.798386045783887~~$, $ |
||
+ | ~~\mathrm{Tarao}_0=~$[[Tarao]]$~\approx\! −0.33650841691839534 $ |
||
+ | |||
+ | : $\!\!\! \mathrm{Sazae}_1=~$[[Sazae]]$_1\!\approx 6.1212504668980685~$, $ |
||
+ | ~~\mathrm{Tarao}_1\!=~$[[Tarao]]$_1\!\approx 0.161228034325064 $ |
||
+ | |||
+ | ==C++ generator of curves== |
||
+ | |||
+ | // Files [[ado.cin]] and [[acosc1.cin]] should be loaded to the working directory in order to compile the [[C++]] code below: |
||
+ | |||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "ado.cin" |
||
+ | #include "acosc1.cin" |
||
+ | |||
+ | #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); |
||
+ | #define S(x,y) fprintf(o,"S\n",); |
||
+ | |||
+ | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | DB Sazae= 2.798386045783887; // H |
||
+ | DB Tarao= -0.33650841691839534; // J |
||
+ | FILE *o;o=fopen("acosc1plot.eps","w");ado(o,230,670); |
||
+ | fprintf(o,"60 10 translate\n 100 100 scale\n"); |
||
+ | for(m=0;m<2;m++){M(m,0)L(m,6.5)} |
||
+ | for(n=0;n<7;n++){M(-.5,n)L(1.5,n)} |
||
+ | fprintf(o,"2 setlinecap .006 W 0 0 0 RGB S\n"); |
||
+ | for(m=-1;m<2;m++){M(.5+m,0)L(.5+m,6.5)} |
||
+ | for(n=0;n<7;n++){M(-.5,n+.5)L(1.5,n+.5)} |
||
+ | fprintf(o,"2 setlinecap .002 W 0 0 0 RGB S\n"); |
||
+ | fprintf(o,"2 setlinecap 1 setlinejoin \n"); |
||
+ | // |
||
+ | /* M(Tarao,Sazae) DO(m,200){x=-.33+.01*(m+.5); z=x; DB t=x-Tarao0, u=sqrt(t); |
||
+ | y=Sazae + u*(2.437906425896532+t*0.50093301330428) |
||
+ | + t*(0.707954233164988+t*0.57144599327344); L(x,y);} fprintf(o,".06 W 0 1 0 RGB S\n"); |
||
+ | */ |
||
+ | // |
||
+ | M(Tarao0,Sazae0) DO(m,200){x=Tarao+(Tarao1-Tarao)*.02*(m+.5); y=Re(acosc(x)); L(x,y) } |
||
+ | fprintf(o,"1 setlinejoin 1 setlinecap .007 W 0 0 1 RGB S\n"); |
||
+ | // |
||
+ | M(Tarao0,Sazae0) DO(m,100){x=Tarao+(Tarao1-Tarao)*.01*(m+.5); y=Re(acosc1(x)); L(x,y) } |
||
+ | L(Tarao1, Sazae1) |
||
+ | fprintf(o,"1 setlinejoin 1 setlinecap .02 W 1 0 0 RGB S\n"); |
||
+ | // |
||
+ | M(Tarao,Sazae) |
||
+ | DO(m,70){x=-.33+.01*(m+.5); z=x; |
||
+ | y=Sazae + sqrt((-2./Tarao)*(x-Tarao)) - 2./(3.*Sazae*Tarao)*(x-Tarao) ; L(x,y);} |
||
+ | fprintf(o,".005 W 0 0 0 RGB S\n"); |
||
+ | // |
||
+ | M(Tarao,Sazae) |
||
+ | DO(m,200){x=-.33+.01*(m+.5); z=x; |
||
+ | y=Sazae - sqrt((-2./Tarao)*(x-Tarao)) - 2./(3.*Sazae*Tarao)*(x-Tarao) ; L(x,y);} |
||
+ | fprintf(o,".005 W 0 0 0 RGB S\n"); |
||
+ | // |
||
+ | M(Tarao1,Sazae1) |
||
+ | DO(m,70){x=Tarao1-.01*(m+.5); DB t=Tarao1-x; DB u=sqrt((2./Tarao1)*t); |
||
+ | y=Sazae1 - u + 1./3./Sazae1 * t; L(x,y)} |
||
+ | fprintf(o,".005 W 0 0 0 RGB S\n"); |
||
+ | // |
||
+ | M(-.1,3.*M_PI/2) L(.1,3.*M_PI/2) |
||
+ | M(-.1,M_PI/2)L(.1,M_PI/2) |
||
+ | M(Tarao,0)L(Tarao,Sazae)L(0,Sazae) |
||
+ | M(Tarao1,0)L(Tarao1,Sazae1)L(0,Sazae1) |
||
+ | fprintf(o,"2 setlinecap .003 W 0 0 0 RGB S\n"); |
||
+ | // |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf acosc1plot.eps"); |
||
+ | system( "open acosc1plot.pdf"); |
||
+ | getchar(); system("killall Preview");//for mac |
||
+ | } |
||
+ | |||
+ | ==Latex generator of labels== |
||
+ | |||
+ | % File [[acosc1plot.pdf]] ahould be generated with the code above on order to compile the [[Latex]] document below: |
||
+ | |||
+ | %<nowiki><br> |
||
+ | \documentclass[12pt]{article} %<br> |
||
+ | \paperheight 838px %<br> |
||
+ | \paperwidth 844px %<br> |
||
+ | \textwidth 1294px %<br> |
||
+ | \textheight 1200px %<br> |
||
+ | \topmargin -80px %<br> |
||
+ | \oddsidemargin -80px %<br> |
||
+ | \usepackage{graphics} %<br> |
||
+ | \usepackage{rotating} %<br> |
||
+ | \newcommand \sx {\scalebox} %<br> |
||
+ | \newcommand \rot {\begin{rotate}} %<br> |
||
+ | \newcommand \ero {\end{rotate}} %<br> |
||
+ | \newcommand \ing {\includegraphics} %<br> |
||
+ | \newcommand \rmi {\mathrm{i}} %<br> |
||
+ | \begin{document} %<br> |
||
+ | \newcommand \zoomax { %<br> |
||
+ | \put(16,820){\sx{4.4}{$y$}} %<br> |
||
+ | \put(16,630){\sx{4}{$2$}} %<br> |
||
+ | \put(16,430){\sx{4}{$0$}} %<br> |
||
+ | \put(-4, 230){\sx{4}{$-\!2$}} %<br> |
||
+ | \put(220, 5){\sx{4}{$-\!2$}} %<br> |
||
+ | \put(443, 5){\sx{4}{$0$}} %<br> |
||
+ | \put(643, 5){\sx{4}{$2$}} %<br> |
||
+ | \put(831,6){\sx{4}{$x$}} %<br> |
||
+ | } %<br> |
||
+ | \parindent 0pt %<br> |
||
+ | %\sx{8}{\begin{picture}(86,86) \put(0,0){\ing{b271t0}} %<br> |
||
+ | \begin{picture}(816,816) %<br> |
||
+ | \put(40,30){\sx{10}{\ing{1h}}} %<br> |
||
+ | \put(40,30){\sx{10}{\ing{1b}}} %<br> |
||
+ | \zoomax %<br> |
||
+ | \end{picture} %<br> |
||
+ | \end{document} %<br> |
||
+ | %</nowiki> |
||
+ | |||
+ | |||
+ | [[Category:acosc1]] |
||
+ | [[Category:Cosc]] |
||
+ | [[Category:ArcCosc]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
Latest revision as of 09:41, 21 June 2013
Plot of Acosc1, which is first branch of inverse function of cosc$(x)=\cos(x)/x$.
Description
- $y=\text{acosc}_1(x)$ is shown with thick red line.
The two asymptotics are shown with thin lines:
- $\displaystyle y= \mathrm R_3(x) =
\mathrm{Sazae}_1 - \sqrt{ \frac{2}{\mathrm{Tarao}_1 } (\mathrm{Tarao}_1\!-\!x) } + \frac{2\, (\mathrm{Tarao}_1 \!-\! x )}{3~ \mathrm{Sazae}_1~ \mathrm{Tarao}_1}$
which approximates the function in vicinity of $\mathrm{Tarao}_1$, and
- $\displaystyle y= \mathrm L_3(x) =
\mathrm{Sazae}_0 + \sqrt{ \frac{-2}{\mathrm{Tarao}_0} (x-\mathrm{Tarao}_0) } - \frac {2\, (x\!-\!\mathrm{Tarao}_0)} {3~ \mathrm{Tarao}_0 ~ \mathrm{Sazae}_0} $ which aprocimates the function in vicinity of Tarao$=\mathrm{Tarao}_0$. These asymptotics are used in the numerical implementation acosc1 available at acosc1.cin.
At the bottom part of the figure, function ArcCosc=acosc is also plotted and compared to its approximation
- $\displaystyle y=\mathrm D_3 (x)=
\mathrm{Sazae}_0 - \sqrt{ \frac{-2}{\mathrm{Tarao}_0} (x-\mathrm{Tarao}_0) } - \frac {2\, (x\!-\!\mathrm{Tarao}_0)} {3~ \mathrm{Tarao}_0 ~ \mathrm{Sazae}_0} $
Constants Sazae are positive solutions $x$ of equation $\text{cosc}'(x)=0$ .
Constants Tarao are defined with
- $\mathrm{Tarao}_n=\mathrm{cosc}(\mathrm{Sazae}_n)$
In particular,
- $\!\!\! \mathrm{Sazae}_0=~$Sazae$~ \approx 2.798386045783887~~$, $
~~\mathrm{Tarao}_0=~$Tarao$~\approx\! −0.33650841691839534 $
- $\!\!\! \mathrm{Sazae}_1=~$Sazae$_1\!\approx 6.1212504668980685~$, $
~~\mathrm{Tarao}_1\!=~$Tarao$_1\!\approx 0.161228034325064 $
C++ generator of curves
// Files ado.cin and acosc1.cin should be loaded to the working directory in order to compile the C++ code below:
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "ado.cin" #include "acosc1.cin"
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); #define S(x,y) fprintf(o,"S\n",);
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; DB Sazae= 2.798386045783887; // H DB Tarao= -0.33650841691839534; // J FILE *o;o=fopen("acosc1plot.eps","w");ado(o,230,670); fprintf(o,"60 10 translate\n 100 100 scale\n"); for(m=0;m<2;m++){M(m,0)L(m,6.5)} for(n=0;n<7;n++){M(-.5,n)L(1.5,n)} fprintf(o,"2 setlinecap .006 W 0 0 0 RGB S\n"); for(m=-1;m<2;m++){M(.5+m,0)L(.5+m,6.5)} for(n=0;n<7;n++){M(-.5,n+.5)L(1.5,n+.5)} fprintf(o,"2 setlinecap .002 W 0 0 0 RGB S\n"); fprintf(o,"2 setlinecap 1 setlinejoin \n"); // /* M(Tarao,Sazae) DO(m,200){x=-.33+.01*(m+.5); z=x; DB t=x-Tarao0, u=sqrt(t); y=Sazae + u*(2.437906425896532+t*0.50093301330428) + t*(0.707954233164988+t*0.57144599327344); L(x,y);} fprintf(o,".06 W 0 1 0 RGB S\n"); */ // M(Tarao0,Sazae0) DO(m,200){x=Tarao+(Tarao1-Tarao)*.02*(m+.5); y=Re(acosc(x)); L(x,y) } fprintf(o,"1 setlinejoin 1 setlinecap .007 W 0 0 1 RGB S\n"); // M(Tarao0,Sazae0) DO(m,100){x=Tarao+(Tarao1-Tarao)*.01*(m+.5); y=Re(acosc1(x)); L(x,y) } L(Tarao1, Sazae1) fprintf(o,"1 setlinejoin 1 setlinecap .02 W 1 0 0 RGB S\n"); // M(Tarao,Sazae) DO(m,70){x=-.33+.01*(m+.5); z=x; y=Sazae + sqrt((-2./Tarao)*(x-Tarao)) - 2./(3.*Sazae*Tarao)*(x-Tarao) ; L(x,y);} fprintf(o,".005 W 0 0 0 RGB S\n"); // M(Tarao,Sazae) DO(m,200){x=-.33+.01*(m+.5); z=x; y=Sazae - sqrt((-2./Tarao)*(x-Tarao)) - 2./(3.*Sazae*Tarao)*(x-Tarao) ; L(x,y);} fprintf(o,".005 W 0 0 0 RGB S\n"); // M(Tarao1,Sazae1) DO(m,70){x=Tarao1-.01*(m+.5); DB t=Tarao1-x; DB u=sqrt((2./Tarao1)*t); y=Sazae1 - u + 1./3./Sazae1 * t; L(x,y)} fprintf(o,".005 W 0 0 0 RGB S\n"); // M(-.1,3.*M_PI/2) L(.1,3.*M_PI/2) M(-.1,M_PI/2)L(.1,M_PI/2) M(Tarao,0)L(Tarao,Sazae)L(0,Sazae) M(Tarao1,0)L(Tarao1,Sazae1)L(0,Sazae1) fprintf(o,"2 setlinecap .003 W 0 0 0 RGB S\n"); // fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf acosc1plot.eps"); system( "open acosc1plot.pdf"); getchar(); system("killall Preview");//for mac }
Latex generator of labels
% File acosc1plot.pdf ahould be generated with the code above on order to compile the Latex document below:
%<br> \documentclass[12pt]{article} %<br> \paperheight 838px %<br> \paperwidth 844px %<br> \textwidth 1294px %<br> \textheight 1200px %<br> \topmargin -80px %<br> \oddsidemargin -80px %<br> \usepackage{graphics} %<br> \usepackage{rotating} %<br> \newcommand \sx {\scalebox} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \newcommand \ing {\includegraphics} %<br> \newcommand \rmi {\mathrm{i}} %<br> \begin{document} %<br> \newcommand \zoomax { %<br> \put(16,820){\sx{4.4}{$y$}} %<br> \put(16,630){\sx{4}{$2$}} %<br> \put(16,430){\sx{4}{$0$}} %<br> \put(-4, 230){\sx{4}{$-\!2$}} %<br> \put(220, 5){\sx{4}{$-\!2$}} %<br> \put(443, 5){\sx{4}{$0$}} %<br> \put(643, 5){\sx{4}{$2$}} %<br> \put(831,6){\sx{4}{$x$}} %<br> } %<br> \parindent 0pt %<br> %\sx{8}{\begin{picture}(86,86) \put(0,0){\ing{b271t0}} %<br> \begin{picture}(816,816) %<br> \put(40,30){\sx{10}{\ing{1h}}} %<br> \put(40,30){\sx{10}{\ing{1b}}} %<br> \zoomax %<br> \end{picture} %<br> \end{document} %<br> %
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 851 × 2,728 (203 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: