Difference between revisions of "File:MagaplotFragment.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
− | + | Fragment of the image |
|
+ | http://mizugadro.mydns.jp/t/index.php/File:Magaplot300.jpg |
||
+ | |||
+ | [[Explicit plot]] of function [[maga]] and related functions. |
||
+ | |||
+ | Thin green curve: $~ y=\,$ [[nori]]$(x)$ $\,=\,$ [[mori]]$\big(\sqrt{x}\big)^2\,=\,$ $\displaystyle \frac{J_0\big(L\, \sqrt{x}\big)^2}{(1\!-\!x)^2}$ |
||
+ | |||
+ | where $J_0=\,$[[BesselJ0]], the zeroth [[Bessel function]], and $L$ is its first zero, $L=\,$[[BesselJZero]]$[0,1]$. |
||
+ | |||
+ | The thick blue and thick red lines represent the half of the Bessel transform of square of [[mori]] with quadratic phase; |
||
+ | |||
+ | [[naga]]$(x) = \displaystyle 2 \,\int_0^\infty \, $[[mori]]$(p )^2 \, \exp(\mathrm i \,x \,p^2) \, p \mathrm d p$ |
||
+ | $\, =\displaystyle \int_0^\infty \, $[[nori]]$(q) \, \exp(\mathrm i \,x \,q)\, \mathrm d q$ |
||
+ | |||
+ | The thick black curve shows the [[maga function]], |
||
+ | |||
+ | $y=\,$[[maga]]$(x) \, = 1-|$[[naga]]$(x)|^2$ |
||
+ | |||
+ | The dotted curve shows its fit, |
||
+ | |||
+ | $y=\mathrm{fit2}(x)=\displaystyle \frac{ x^{3/2}}{\sqrt{5-x/2+x^2/4+x^3}}$ |
||
+ | |||
+ | The thin blue line shows deviation of this fit from the [[maga function]]; in order to mage this deviation visible, it is scaled with factor 50: |
||
+ | |||
+ | $y=50\big( \mathrm{fit2}(x)-\mathrm{maga}(x)\big)$ |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include<math.h> |
||
+ | #include<stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #include <complex> |
||
+ | //using namespace std; |
||
+ | #define z_type std::complex<double> |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define RI(x) x.real(),x.imag() |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | |||
+ | void fft(z_type *a, int N, int o) // Arry is FIRST! |
||
+ | {z_type u,w,t; int i,j,k,l,e=1,L,p,q,m; |
||
+ | q=N/2; p=2; for(m=1;p<N;m++) p*=2; |
||
+ | p=N-1; z_type y=z_type(0.,M_PI*o); j=0; |
||
+ | for(i=0;i<p;i++){ if(i<j) { t=a[j]; a[j]=a[i]; a[i]=t;} |
||
+ | k=q; while(k<=j){ j-=k; k/=2;} |
||
+ | j+=k; } |
||
+ | for(l=0;l<m;l++) |
||
+ | { L=e; e*=2; u=1.; w=exp(y/((double)L)); |
||
+ | for(j=0;j<L;j++) |
||
+ | { for(i=j;i<N;i+=e){k=i+L; t=a[k]*u; a[k]=a[i]-t; a[i]+=t;} |
||
+ | u*=w; |
||
+ | } } |
||
+ | } |
||
+ | |||
+ | void ado(FILE *O, int X, int Y) |
||
+ | { fprintf(O,"%c!PS-Adobe-2.0 EPSF-2.0\n",'%'); |
||
+ | fprintf(O,"%c%cBoundingBox: 0 0 %d %d\n",'%','%',X,Y); |
||
+ | fprintf(O,"/M {moveto} bind def\n"); |
||
+ | fprintf(O,"/L {lineto} bind def\n"); |
||
+ | fprintf(O,"/S {stroke} bind def\n"); |
||
+ | fprintf(O,"/s {show newpath} bind def\n"); |
||
+ | fprintf(O,"/C {closepath} bind def\n"); |
||
+ | fprintf(O,"/F {fill} bind def\n"); |
||
+ | fprintf(O,"/o {.01 0 360 arc C S} bind def\n"); |
||
+ | fprintf(O,"/times-Roman findfont 20 scalefont setfont\n"); |
||
+ | fprintf(O,"/W {setlinewidth} bind def\n"); |
||
+ | fprintf(O,"/RGB {setrgbcolor} bind def\n");} |
||
+ | |||
+ | // #include "ado.cin" |
||
+ | // #include"fafo.cin" |
||
+ | //#include "mori.cin" |
||
+ | DB L1= 2.404825557695773; |
||
+ | DB L2= 5.5200781102863115; |
||
+ | DB L3= 8.653727912911013; |
||
+ | DB morin(DB x){ return j0(L1*x)/(1-x*x);} |
||
+ | DB mori0(DB x){ int n,m; DB s, xx=x*x; |
||
+ | DB c[16]={ 1., -0.4457964907366961303, 0.07678538241994023453, -0.0071642885058902232688, |
||
+ | 0.00042159522055140947688, -0.000017110542281627483109, 5.0832583976057607495e-7, -1.1537378620148452816e-8, |
||
+ | 2.0662789231930073316e-10, -2.9948657413756059965e-12, 3.5852738451127332173e-14,-3.6050239634659700777e-16, |
||
+ | 3.0877184831292878827e-18, -2.2798156440952688462e-20, 1.4660907878585489441e-22,-8.2852774398657968065e-25}; |
||
+ | // 16th term seems to fail; perhaps, due to the C++ rounding errors. |
||
+ | //with m=15, at |x|<2, the error is of order of 10^(-16) |
||
+ | //In this sense, the result is accurate while |x|<2. |
||
+ | m=15; s=c[m]*xx; for(n=m-1;n>0;n--){ s+=c[n]; s*=xx;} |
||
+ | return 1.+s;} |
||
+ | DB mori(DB x){if(fabs(x)<2) return mori0(x); |
||
+ | return morin(x);} |
||
+ | |||
+ | DB fit(DB x){ DB a,b,c,cc,s; a=-.055; b=0.02; c=0.45; cc=c*c; |
||
+ | s=x*(a+x*(b+x*cc)); return c*x*sqrt(x/(1.+s)); } |
||
+ | |||
+ | DB fit2(DB x){ DB q; q=5.+x*(-.5+x*(.25+x)); return x*sqrt(x/q);} |
||
+ | |||
+ | int main(){z_type * a, *b, c; int j,m,n,N; FILE *o; DB scale,step,x,y,q,p,u,v; |
||
+ | n=15; |
||
+ | N=pow(2,n); |
||
+ | //scale=.5; |
||
+ | step=sqrt(2*M_PI/N); |
||
+ | scale=100*step; |
||
+ | DB dx=step*scale; |
||
+ | DB dp=step/scale; |
||
+ | printf("2^%2d=%8d scale=%6.4lf dx=%9.8lf dp=%9.8lf\n",n,N,scale,dx,dp); |
||
+ | a=(z_type *) malloc((size_t)((N+1)*sizeof(z_type))); |
||
+ | b=(z_type *) malloc((size_t)((N+1)*sizeof(z_type))); |
||
+ | |||
+ | DO(m,N){x=m*dx; y=mori(sqrt(x)); y*=y; a[m]=y; b[m]=y*dx; } |
||
+ | b[0]*=.5; |
||
+ | fft(b,N,1); //DO(j,N) printf("%2d %18.15f %18.15f %18.15f %18.15f\n", j, RI(a[j]), RI(b[j]) ); |
||
+ | //o=fopen("32.eps","w"); ado(o,1008,228); |
||
+ | o=fopen("magaplo.eps","w"); ado(o,1008,208); |
||
+ | #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); |
||
+ | #define o(x,y) fprintf(o,"%6.4f %6.4f o\n",0.+x,0.+y); |
||
+ | fprintf(o,"4 104 translate 100 100 scale\n 1 setlinejoin 2 setlinecap\n"); |
||
+ | for(m=0;m<11;m++) {M(m,-1) L(m,1)} |
||
+ | for(n=-1;n<2;n++) {M(0,n) L(10,n)} fprintf(o,".002 W S\n"); |
||
+ | |||
+ | DO(m,N){x=dx*m; y=Re(a[m]); if(m==0)M(x,y)else L(x,y);if(x>10) break;} fprintf(o,".008 W 0 .8 0 RGB S\n"); |
||
+ | //DO(n,N){p=dp*n; y=fit(p); if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".008 W 1 0 0 RGB S\n"); |
||
+ | //DO(n,N){p=dp*n; y=fit2(p); if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".008 W 0 0 1 RGB S\n"); |
||
+ | fprintf(o,".01 W 0 0 1 RGB\n"); |
||
+ | for(n=4;n<N;n+=4){p=dp*n; y=fit2(p); o(p,y);if(p>10) break;} |
||
+ | |||
+ | DO(n,N){p=dp*n; y=Re(b[n]); if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".02 W 0 0 1 RGB S\n"); |
||
+ | DO(n,N){p=dp*n; y=Im(b[n]); if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".02 W 1 0 0 RGB S\n"); |
||
+ | DO(n,N){p=dp*n; u=Re(b[n]); v=Im(b[n]); y=1-u*u-v*v; if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".02 W 0 0 0 RGB S\n"); |
||
+ | // fprintf(o,".01 W 0 0 0 RGB\n"); |
||
+ | //for(n=4;n<N;n+=4){p=dp*n; u=Re(b[n]); v=Im(b[n]); y=1-u*u-v*v; o(p,y);if(p>10) break;} |
||
+ | |||
+ | //DO(n,N){p=dp*n; u=Re(b[n]); v=Im(b[n]); y=fit(p)-(1.-u*u-v*v); y*=50; if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".004 W .8 0 0 RGB S\n"); |
||
+ | DO(n,N){p=dp*n; u=Re(b[n]); v=Im(b[n]); y=fit2(p)-(1.-u*u-v*v); y*=50; if(n==0)M(p,y)else L(p,y);if(p>10) break;} |
||
+ | fprintf(o,".008 W 0 0 1 RGB S\n"); |
||
+ | |||
+ | fprintf(o,"showpage\n%cTrailer",'%'); fclose(o); |
||
+ | system("epstopdf magaplo.eps"); |
||
+ | system( "open magaplo.pdf"); |
||
+ | free(a); |
||
+ | free(b); |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \usepackage{graphics} |
||
+ | \usepackage{rotating} |
||
+ | \paperwidth 420pt |
||
+ | \paperheight 216pt |
||
+ | \textwidth 1420pt |
||
+ | \textheight 300pt |
||
+ | \topmargin -108pt |
||
+ | \oddsidemargin -73pt |
||
+ | \newcommand \ds {\displaystyle} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \rme {\mathrm{e}} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \pagestyle{empty} |
||
+ | \parindent 0pt |
||
+ | \begin{document} |
||
+ | \begin{picture}(410,214) |
||
+ | \put(10,0){\ing{magaplo}} |
||
+ | %\put(.6,120){\sx{1.25}{$y$}} |
||
+ | \put(2,199){\sx{1.3}{$1$}} |
||
+ | %\put(.6,56){\sx{1.4}{$\frac{1}{2}$}} |
||
+ | \put(2, 100){\sx{1.3}{$0$}} |
||
+ | \put(-2, 0){\sx{1.3}{$-\!1$}} |
||
+ | \put(111,88){\sx{1.33}{$1$}} |
||
+ | \put(211,88){\sx{1.33}{$2$}} |
||
+ | \put(311,89){\sx{1.33}{$3$}} |
||
+ | \put(406,89){\sx{1.4}{$x$}} |
||
+ | %\put(411,89){\sx{1.33}{$4$}} |
||
+ | %\put(512,89){\sx{1.33}{$5$}} |
||
+ | %\put(613,89){\sx{1.33}{$6$}} |
||
+ | %\put(713,89){\sx{1.33}{$7$}} |
||
+ | %\put(813,89){\sx{1.33}{$8$}} |
||
+ | %\put(914,89){\sx{1.33}{$9$}} |
||
+ | %\put(1010,89){\sx{1.4}{$x$}} |
||
+ | %\put(15,192){\rot{-36}\sx{1.3}{$y\!=\! \mathrm{nori}(x)$}\ero} |
||
+ | |||
+ | \put(280,199){\rot{3}\sx{1.3}{$y\!=\! \mathrm{fit2}(x))$}\ero} |
||
+ | \put(280,178){\rot{3}\sx{1.3}{$y\!=\! \mathrm{maga}(x))$}\ero} |
||
+ | |||
+ | \put(118,130){\rot{-16}\sx{1.3}{$y\!=\! \mathrm{nori}(x)$}\ero} |
||
+ | \put(292,142){\rot{-4}\sx{1.3}{$y\!=\! \Im(\mathrm{naga}(x))$}\ero} |
||
+ | \put(292,120){\rot{-4}\sx{1.3}{$y\!=\! \Re(\mathrm{naga}(x))$}\ero} |
||
+ | |||
+ | \put(170,26){\sx{1.3}{$y\!=\! 50 \Big(\mathrm{fit2}(x)-\mathrm{maga}(x)\Big)$}} |
||
+ | \end{picture}\end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | [[Category:Bessel transform]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:FFT]] |
||
+ | [[Category:Fragment]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Maga function]] |
||
+ | [[Category:Makoto Morinaga]] |
||
+ | [[Category:Mori]] |
||
+ | [[Category:Morinaga function]] |
||
+ | [[Category:Naga]] |
||
+ | [[Category:SinFT]] |
||
+ | [[Category:CosFT]] |
Latest revision as of 08:42, 1 December 2018
Fragment of the image http://mizugadro.mydns.jp/t/index.php/File:Magaplot300.jpg
Explicit plot of function maga and related functions.
Thin green curve: $~ y=\,$ nori$(x)$ $\,=\,$ mori$\big(\sqrt{x}\big)^2\,=\,$ $\displaystyle \frac{J_0\big(L\, \sqrt{x}\big)^2}{(1\!-\!x)^2}$
where $J_0=\,$BesselJ0, the zeroth Bessel function, and $L$ is its first zero, $L=\,$BesselJZero$[0,1]$.
The thick blue and thick red lines represent the half of the Bessel transform of square of mori with quadratic phase;
naga$(x) = \displaystyle 2 \,\int_0^\infty \, $mori$(p )^2 \, \exp(\mathrm i \,x \,p^2) \, p \mathrm d p$ $\, =\displaystyle \int_0^\infty \, $nori$(q) \, \exp(\mathrm i \,x \,q)\, \mathrm d q$
The thick black curve shows the maga function,
$y=\,$maga$(x) \, = 1-|$naga$(x)|^2$
The dotted curve shows its fit,
$y=\mathrm{fit2}(x)=\displaystyle \frac{ x^{3/2}}{\sqrt{5-x/2+x^2/4+x^3}}$
The thin blue line shows deviation of this fit from the maga function; in order to mage this deviation visible, it is scaled with factor 50:
$y=50\big( \mathrm{fit2}(x)-\mathrm{maga}(x)\big)$
C++ generator of curves
#include<math.h>
#include<stdio.h>
#include <stdlib.h>
#include <complex>
//using namespace std;
#define z_type std::complex<double>
#define Re(x) x.real()
#define Im(x) x.imag()
#define RI(x) x.real(),x.imag()
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
void fft(z_type *a, int N, int o) // Arry is FIRST!
{z_type u,w,t; int i,j,k,l,e=1,L,p,q,m;
q=N/2; p=2; for(m=1;p<N;m++) p*=2;
p=N-1; z_type y=z_type(0.,M_PI*o); j=0;
for(i=0;i<p;i++){ if(i<j) { t=a[j]; a[j]=a[i]; a[i]=t;}
k=q; while(k<=j){ j-=k; k/=2;}
j+=k; }
for(l=0;l<m;l++)
{ L=e; e*=2; u=1.; w=exp(y/((double)L));
for(j=0;j<L;j++)
{ for(i=j;i<N;i+=e){k=i+L; t=a[k]*u; a[k]=a[i]-t; a[i]+=t;}
u*=w;
} }
}
void ado(FILE *O, int X, int Y)
{ fprintf(O,"%c!PS-Adobe-2.0 EPSF-2.0\n",'%');
fprintf(O,"%c%cBoundingBox: 0 0 %d %d\n",'%','%',X,Y);
fprintf(O,"/M {moveto} bind def\n");
fprintf(O,"/L {lineto} bind def\n");
fprintf(O,"/S {stroke} bind def\n");
fprintf(O,"/s {show newpath} bind def\n");
fprintf(O,"/C {closepath} bind def\n");
fprintf(O,"/F {fill} bind def\n");
fprintf(O,"/o {.01 0 360 arc C S} bind def\n");
fprintf(O,"/times-Roman findfont 20 scalefont setfont\n");
fprintf(O,"/W {setlinewidth} bind def\n");
fprintf(O,"/RGB {setrgbcolor} bind def\n");}
// #include "ado.cin"
// #include"fafo.cin"
//#include "mori.cin"
DB L1= 2.404825557695773;
DB L2= 5.5200781102863115;
DB L3= 8.653727912911013;
DB morin(DB x){ return j0(L1*x)/(1-x*x);}
DB mori0(DB x){ int n,m; DB s, xx=x*x;
DB c[16]={ 1., -0.4457964907366961303, 0.07678538241994023453, -0.0071642885058902232688,
0.00042159522055140947688, -0.000017110542281627483109, 5.0832583976057607495e-7, -1.1537378620148452816e-8,
2.0662789231930073316e-10, -2.9948657413756059965e-12, 3.5852738451127332173e-14,-3.6050239634659700777e-16,
3.0877184831292878827e-18, -2.2798156440952688462e-20, 1.4660907878585489441e-22,-8.2852774398657968065e-25};
// 16th term seems to fail; perhaps, due to the C++ rounding errors.
//with m=15, at |x|<2, the error is of order of 10^(-16)
//In this sense, the result is accurate while |x|<2.
m=15; s=c[m]*xx; for(n=m-1;n>0;n--){ s+=c[n]; s*=xx;}
return 1.+s;}
DB mori(DB x){if(fabs(x)<2) return mori0(x);
return morin(x);}
DB fit(DB x){ DB a,b,c,cc,s; a=-.055; b=0.02; c=0.45; cc=c*c;
s=x*(a+x*(b+x*cc)); return c*x*sqrt(x/(1.+s)); }
DB fit2(DB x){ DB q; q=5.+x*(-.5+x*(.25+x)); return x*sqrt(x/q);}
int main(){z_type * a, *b, c; int j,m,n,N; FILE *o; DB scale,step,x,y,q,p,u,v;
n=15;
N=pow(2,n);
//scale=.5;
step=sqrt(2*M_PI/N);
scale=100*step;
DB dx=step*scale;
DB dp=step/scale;
printf("2^%2d=%8d scale=%6.4lf dx=%9.8lf dp=%9.8lf\n",n,N,scale,dx,dp);
a=(z_type *) malloc((size_t)((N+1)*sizeof(z_type)));
b=(z_type *) malloc((size_t)((N+1)*sizeof(z_type)));
DO(m,N){x=m*dx; y=mori(sqrt(x)); y*=y; a[m]=y; b[m]=y*dx; }
b[0]*=.5;
fft(b,N,1); //DO(j,N) printf("%2d %18.15f %18.15f %18.15f %18.15f\n", j, RI(a[j]), RI(b[j]) );
//o=fopen("32.eps","w"); ado(o,1008,228);
o=fopen("magaplo.eps","w"); ado(o,1008,208);
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
#define o(x,y) fprintf(o,"%6.4f %6.4f o\n",0.+x,0.+y);
fprintf(o,"4 104 translate 100 100 scale\n 1 setlinejoin 2 setlinecap\n");
for(m=0;m<11;m++) {M(m,-1) L(m,1)}
for(n=-1;n<2;n++) {M(0,n) L(10,n)} fprintf(o,".002 W S\n");
DO(m,N){x=dx*m; y=Re(a[m]); if(m==0)M(x,y)else L(x,y);if(x>10) break;} fprintf(o,".008 W 0 .8 0 RGB S\n");
//DO(n,N){p=dp*n; y=fit(p); if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".008 W 1 0 0 RGB S\n");
//DO(n,N){p=dp*n; y=fit2(p); if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".008 W 0 0 1 RGB S\n");
fprintf(o,".01 W 0 0 1 RGB\n");
for(n=4;n<N;n+=4){p=dp*n; y=fit2(p); o(p,y);if(p>10) break;}
DO(n,N){p=dp*n; y=Re(b[n]); if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".02 W 0 0 1 RGB S\n");
DO(n,N){p=dp*n; y=Im(b[n]); if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".02 W 1 0 0 RGB S\n");
DO(n,N){p=dp*n; u=Re(b[n]); v=Im(b[n]); y=1-u*u-v*v; if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".02 W 0 0 0 RGB S\n");
// fprintf(o,".01 W 0 0 0 RGB\n");
//for(n=4;n<N;n+=4){p=dp*n; u=Re(b[n]); v=Im(b[n]); y=1-u*u-v*v; o(p,y);if(p>10) break;}
//DO(n,N){p=dp*n; u=Re(b[n]); v=Im(b[n]); y=fit(p)-(1.-u*u-v*v); y*=50; if(n==0)M(p,y)else L(p,y);if(p>10) break;} fprintf(o,".004 W .8 0 0 RGB S\n");
DO(n,N){p=dp*n; u=Re(b[n]); v=Im(b[n]); y=fit2(p)-(1.-u*u-v*v); y*=50; if(n==0)M(p,y)else L(p,y);if(p>10) break;}
fprintf(o,".008 W 0 0 1 RGB S\n");
fprintf(o,"showpage\n%cTrailer",'%'); fclose(o);
system("epstopdf magaplo.eps");
system( "open magaplo.pdf");
free(a);
free(b);
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 420pt
\paperheight 216pt
\textwidth 1420pt
\textheight 300pt
\topmargin -108pt
\oddsidemargin -73pt
\newcommand \ds {\displaystyle}
\newcommand \sx {\scalebox}
\newcommand \rme {\mathrm{e}}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\pagestyle{empty}
\parindent 0pt
\begin{document}
\begin{picture}(410,214)
\put(10,0){\ing{magaplo}}
%\put(.6,120){\sx{1.25}{$y$}}
\put(2,199){\sx{1.3}{$1$}}
%\put(.6,56){\sx{1.4}{$\frac{1}{2}$}}
\put(2, 100){\sx{1.3}{$0$}}
\put(-2, 0){\sx{1.3}{$-\!1$}}
\put(111,88){\sx{1.33}{$1$}}
\put(211,88){\sx{1.33}{$2$}}
\put(311,89){\sx{1.33}{$3$}}
\put(406,89){\sx{1.4}{$x$}}
%\put(411,89){\sx{1.33}{$4$}}
%\put(512,89){\sx{1.33}{$5$}}
%\put(613,89){\sx{1.33}{$6$}}
%\put(713,89){\sx{1.33}{$7$}}
%\put(813,89){\sx{1.33}{$8$}}
%\put(914,89){\sx{1.33}{$9$}}
%\put(1010,89){\sx{1.4}{$x$}}
%\put(15,192){\rot{-36}\sx{1.3}{$y\!=\! \mathrm{nori}(x)$}\ero}
\put(280,199){\rot{3}\sx{1.3}{$y\!=\! \mathrm{fit2}(x))$}\ero}
\put(280,178){\rot{3}\sx{1.3}{$y\!=\! \mathrm{maga}(x))$}\ero}
\put(118,130){\rot{-16}\sx{1.3}{$y\!=\! \mathrm{nori}(x)$}\ero}
\put(292,142){\rot{-4}\sx{1.3}{$y\!=\! \Im(\mathrm{naga}(x))$}\ero}
\put(292,120){\rot{-4}\sx{1.3}{$y\!=\! \Re(\mathrm{naga}(x))$}\ero}
\put(170,26){\sx{1.3}{$y\!=\! 50 \Big(\mathrm{fit2}(x)-\mathrm{maga}(x)\Big)$}}
\end{picture}\end{document}
References
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:13, 1 December 2018 | 1,743 × 896 (245 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: