Difference between revisions of "File:ShokotaniaT.png"

From TORI
Jump to navigation Jump to search
(Importing image file)
 
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
  +
[[Explicit plot]]s of the [[Shoko function]] (thick curve) and the [[Tania function]] (thin curve).
Importing image file
 
  +
  +
==C++ generator of curves==
  +
  +
// files [[doya.cin]] and [[ado.cin]] should be loaded in the working directory in order to compile the [[C++]] code below.
  +
  +
#include<math.h>
  +
#include<stdio.h>
  +
#include<stdlib.h>
  +
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
using namespace std;
  +
#include <complex>
  +
typedef complex<double> z_type;
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define I z_type(0.,1.)
  +
#include "ado.cin"
  +
#include "doya.cin"
  +
  +
DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); }
  +
  +
main(){ int m,n; double x,y; FILE *o;
  +
o=fopen("ShokoTania.eps","w"); ado(o,802,460);
  +
fprintf(o,"401 1 translate 100 100 scale\n");
  +
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
  +
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
  +
for(m=-4;m<5;m++) {M(m,0)L(m,4)}
  +
for(m=0;m<5;m++) {M(-4,m)L(4,m)}
  +
fprintf(o,"2 setlinecap .01 W S\n");
  +
for(m=0;m<81;m++) {x=-4.+.1*m; y=Shoko(x); if(m==0) M(x,y) else L(x,y);}
  +
fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0.6 0 RGB S\n");
  +
for(m=0;m<81;m++) {x=-4.+.1*m; y=Re(Tania(x)); if(m==0) M(x,y) else L(x,y);}
  +
fprintf(o,"1 setlinecap 1 setlinejoin .014 W 0.4 0 .4 RGB S\n");
  +
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
  +
system("epstopdf ShokoTania.eps");
  +
system( "open ShokoTania.pdf");
  +
getchar(); system("killall Preview");//for mac
  +
}
  +
  +
==Latex generator of labels==
  +
  +
% file [[ShokoTania.pdf]] should be generated with the code above in order to compile the [[Latex]] document below.
  +
% <poem><nomathjax><nowiki><br>
  +
  +
\documentclass[12pt]{article} %<br>
  +
\usepackage{geometry} %<br>
  +
\usepackage{graphics} %<br>
  +
\usepackage{rotating} %<br>
  +
\paperwidth 804pt %<br>
  +
\paperheight 460pt %<br>
  +
\topmargin -111pt %<br>
  +
\oddsidemargin -73pt %<br>
  +
\parindent 0pt %<br>
  +
\pagestyle{empty} %<br>
  +
\newcommand \sx {\scalebox} %<br>
  +
\newcommand \rot {\begin{rotate}} %<br>
  +
\newcommand \ero {\end{rotate}} %<br>
  +
\begin{document} %<br>
  +
\begin{picture}(802,462) %<br>
  +
\put(0,0){\includegraphics{ShokoTania}} %<br>
  +
\put(380,440){\sx{3.2}{$y$}} %<br>
  +
\put(380,392){\sx{3.2}{$4$}} %<br>
  +
\put(380,292){\sx{3.2}{$3$}} %<br>
  +
\put(380,192){\sx{3.2}{$2$}} %<br>
  +
\put(380, 92){\sx{3.2}{$1$}} %<br>
  +
\put( 75, 4){\sx{3.2}{$-\!3$}} %<br>
  +
\put(175, 4){\sx{3.2}{$-\!2$}} %<br>
  +
\put(275, 4){\sx{3.2}{$-\!1$}} %<br>
  +
\put(394, 4){\sx{3.2}{$0$}} %<br>
  +
\put(494, 4){\sx{3.2}{$1$}} %<br>
  +
\put(594, 4){\sx{3.2}{$2$}} %<br>
  +
\put(694, 4){\sx{3.2}{$3$}} %<br>
  +
\put(784, 4){\sx{3.2}{$x$}} %<br>
  +
\put(442,140){\sx{3.2}{\rot{41} $y\!=\!\mathrm{Shoko}(x)$\ero}} %<br>
  +
\put(468,102){\sx{3.2}{\rot{32} $y\!=\!\mathrm{Tania}(x)$\ero}} %<br>
  +
\end{picture} %<br>
  +
\end{document} %<br>
  +
%</nowiki></nomathjax></poem>
  +
  +
% Copyleft 2012 by Dmitrii Kouznetsov
  +
  +
==References==
  +
  +
[[Category:Book]]
  +
[[Category:BookPlot]]
  +
[[Category:Shoka function]]
  +
[[Category:Tania function]]
  +
[[Category:Lased science]]
  +
[[Category:Explicit plot]]
  +
[[Category:Superfunction]]
  +
[[Category:C++]]
  +
[[Category:Latex]]

Latest revision as of 08:51, 1 December 2018

Explicit plots of the Shoko function (thick curve) and the Tania function (thin curve).

C++ generator of curves

// files doya.cin and ado.cin should be loaded in the working directory in order to compile the C++ code below.

#include<math.h>
#include<stdio.h>
#include<stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "ado.cin"
#include "doya.cin"
DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); }
main(){ int m,n; double x,y; FILE *o;
o=fopen("ShokoTania.eps","w"); ado(o,802,460);
fprintf(o,"401 1 translate 100 100 scale\n");
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y);
for(m=-4;m<5;m++) {M(m,0)L(m,4)}
for(m=0;m<5;m++) {M(-4,m)L(4,m)}
fprintf(o,"2 setlinecap .01 W S\n");
for(m=0;m<81;m++) {x=-4.+.1*m; y=Shoko(x); if(m==0) M(x,y) else L(x,y);}
fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0.6 0 RGB S\n");
for(m=0;m<81;m++) {x=-4.+.1*m; y=Re(Tania(x)); if(m==0) M(x,y) else L(x,y);}
fprintf(o,"1 setlinecap 1 setlinejoin .014 W 0.4 0 .4 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
    system("epstopdf ShokoTania.eps");
    system(    "open ShokoTania.pdf");            
    getchar(); system("killall Preview");//for mac
}

Latex generator of labels

% file ShokoTania.pdf should be generated with the code above in order to compile the Latex document below.

%

<br>

\documentclass[12pt]{article} %<br>
\usepackage{geometry} %<br>
\usepackage{graphics} %<br>
\usepackage{rotating} %<br>
\paperwidth 804pt %<br>
\paperheight 460pt %<br>
\topmargin -111pt %<br>
\oddsidemargin -73pt %<br>
\parindent 0pt %<br>
\pagestyle{empty} %<br>
\newcommand \sx {\scalebox} %<br>
\newcommand \rot {\begin{rotate}} %<br>
\newcommand \ero {\end{rotate}} %<br>
\begin{document} %<br>
\begin{picture}(802,462) %<br>
\put(0,0){\includegraphics{ShokoTania}} %<br>
\put(380,440){\sx{3.2}{$y$}} %<br>
\put(380,392){\sx{3.2}{$4$}} %<br>
\put(380,292){\sx{3.2}{$3$}} %<br>
\put(380,192){\sx{3.2}{$2$}} %<br>
\put(380, 92){\sx{3.2}{$1$}} %<br>
\put( 75, 4){\sx{3.2}{$-\!3$}} %<br>
\put(175, 4){\sx{3.2}{$-\!2$}} %<br>
\put(275, 4){\sx{3.2}{$-\!1$}} %<br>
\put(394, 4){\sx{3.2}{$0$}} %<br>
\put(494, 4){\sx{3.2}{$1$}} %<br>
\put(594, 4){\sx{3.2}{$2$}} %<br>
\put(694, 4){\sx{3.2}{$3$}} %<br>
\put(784, 4){\sx{3.2}{$x$}} %<br>
\put(442,140){\sx{3.2}{\rot{41} $y\!=\!\mathrm{Shoko}(x)$\ero}} %<br>
\put(468,102){\sx{3.2}{\rot{32} $y\!=\!\mathrm{Tania}(x)$\ero}} %<br>
\end{picture} %<br>
\end{document} %<br>
%

% Copyleft 2012 by Dmitrii Kouznetsov

References

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current17:50, 20 June 2013Thumbnail for version as of 17:50, 20 June 20131,669 × 955 (119 KB)Maintenance script (talk | contribs)Importing image file

The following 3 pages use this file:

Metadata