Difference between revisions of "File:Superfactocomple1.png"
(Importing image file) |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | {{oq|Superfactocomple1.png|Original file (706 × 706 pixels, file size: 172 KB, MIME type: image/png)}} |
||
− | Importing image file |
||
+ | |||
+ | [[Complex map]] of \(f=\)[[SuperFactorial]](\(x\!+\!\mathrm i y\)) in the \(x,y\) plane. |
||
+ | |||
+ | Levels <br> |
||
+ | \(u\!=\!\Re(f)=\)constant and<br> |
||
+ | \(u\!=\!\Im(f)=\)constant are drawn.<br> |
||
+ | Thick lines correspond to the integer values. |
||
+ | |||
+ | ==C++ generator of curves== |
||
+ | Sorry, have misplaced the original generator. I load the code that does almost the same picture. |
||
+ | |||
+ | Files |
||
+ | [[SuperFactorial.cin]] |
||
+ | [[ado.cin]] |
||
+ | [[conto.cin]] |
||
+ | should be loaded to the working directory in order to compile the [[C++]] code below: |
||
+ | <pre> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | // using namespace std; |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "fac.cin" |
||
+ | //#include "sinc.cin" |
||
+ | #include "facp.cin" |
||
+ | #include "afacc.cin" |
||
+ | #include "superfactorial.cin" |
||
+ | #include "conto.cin" |
||
+ | |||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | int M=403,M1=M+1; |
||
+ | int N=401,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | // FILE *o;o=fopen("fig2b.eps","w");ado(o,402,402); |
||
+ | FILE *o;o=fopen("SuperFacMap.eps","w");ado(o,402,402); |
||
+ | fprintf(o,"201 201 translate\n 20 20 scale\n"); |
||
+ | // DO(m,M1)X[m]=-8.04+.04*(m+.5); |
||
+ | DO(m,M1){t=-1.+.022*m; X[m]=.2+t-1.11*exp(-1.9*t);} |
||
+ | |||
+ | // DO(n,N1)Y[n]=-8.04+.04*(n+.5); |
||
+ | DO(n,N1){t=-8.04+.04*(n+.5); t*=.97; Y[n]=t-.25*sin(0.6127874523307*t);} |
||
+ | |||
+ | for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} |
||
+ | for(n=-8;n<9;n++){ M( -8,n)L(8,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | // c=afacc(z); |
||
+ | // c=fac(z); |
||
+ | c=superfac(z); |
||
+ | // p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.; |
||
+ | p=Re(c);q=Im(c); |
||
+ | if(p>-20 && p<20 && |
||
+ | // (fabs(y)>.034 ||x>-.9 ||fabs(x-int(x))>1.e-3) && |
||
+ | q>-20 && q<20 && fabs(q)> 1.e-16 |
||
+ | ) |
||
+ | {g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | }} |
||
+ | //fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.8;q=.7; |
||
+ | |||
+ | fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.4;q=.8; |
||
+ | for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .5 0 RGB S\n"); |
||
+ | for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .8 0 0 RGB S\n"); |
||
+ | for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .8 RGB S\n"); |
||
+ | for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".04 W .8 0 0 RGB S\n"); |
||
+ | for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 .8 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-9,9); fprintf(o,".04 W .5 0 .5 RGB S\n"); |
||
+ | for(m=-14;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n"); |
||
+ | m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-9,9); fprintf(o,".04 W 0 0 0 RGB S\n"); |
||
+ | for(m=1;m<17;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n"); |
||
+ | //#include"plofu.cin" |
||
+ | // x=0.8856031944; |
||
+ | conto(o,g,w,v,X,Y,M,N,0.8856031944,-p,p); fprintf(o,".004 W .2 .2 0 RGB S\n"); |
||
+ | /* |
||
+ | M(x,-8)L(x,8) fprintf(o,"0 setlinejoin 0 setlinecap 0.004 W 0 0 0 RGB S\n"); |
||
+ | M(x,0)L(-8.1,0) fprintf(o," .05 W 1 1 1 RGB S\n"); |
||
+ | DO(m,23){ M(x-.4*m,0)L(x-.4*(m+.5),0);} fprintf(o,".09 W .3 .3 0 RGB S\n"); |
||
+ | //M(x,0)L(-8.1,0) fprintf(o,"[.19 .21]0 setdash .05 W 0 0 0 RGB S\n"); |
||
+ | // May it be, that, some printers do not interpret well the dashing ? |
||
+ | */ |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf SuperFacMap.eps"); |
||
+ | system( "open SuperFacMap.pdf"); //for LINUX |
||
+ | // getchar(); system("killall Preview");//for mac |
||
+ | } |
||
+ | </pre> |
||
+ | |||
+ | == generator of labels== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \paperwidth 342pt |
||
+ | \paperheight 338pt |
||
+ | \textwidth 500pt |
||
+ | \textheight 500pt |
||
+ | \topmargin -106pt |
||
+ | \oddsidemargin -96pt |
||
+ | \parindent 0pt |
||
+ | \pagestyle{empty} |
||
+ | \usepackage {graphics} |
||
+ | \usepackage{rotating} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \begin{document} |
||
+ | %\begin{picture}(1006,1006) \put(0,0){\ing{facit}} |
||
+ | \begin{picture}(362,362) |
||
+ | \put(0,0){\ing{SuperFacMap}} |
||
+ | \put(30,357){\sx{1.3}{$y$}} |
||
+ | \put(30,317){\sx{1.3}{$6$}} |
||
+ | \put(30,277){\sx{1.3}{$4$}} |
||
+ | \put(30,237){\sx{1.3}{$2$}} |
||
+ | \put(29,196){\sx{1.3}{$0$}} |
||
+ | \put(20,156){\sx{1.3}{$-2$}} |
||
+ | \put(20,116){\sx{1.3}{$-4$}} |
||
+ | \put(20,76){\sx{1.3}{$-6$}} |
||
+ | \put(20,36){\sx{1.3}{$-8$}} |
||
+ | \put(70,29){\sx{1.3}{$-6$}} |
||
+ | \put(110,29){\sx{1.3}{$-4$}} |
||
+ | \put(150,29){\sx{1.3}{$-2$}} |
||
+ | \put(198,29){\sx{1.3}{$0$}} |
||
+ | \put(238,29){\sx{1.3}{$2$}} |
||
+ | \put(278,29){\sx{1.3}{$4$}} |
||
+ | \put(318,29){\sx{1.3}{$6$}} |
||
+ | \put(354,29){\sx{1.3}{$x$}} |
||
+ | \put(50,344){\sx{1.3}{$u\!=\!2$}} |
||
+ | \put(50,306){\sx{1.3}{$v\!=\!0$}} |
||
+ | \put(50,255){\sx{1.3}{$u\!=\!2$}} |
||
+ | \put(50,204){\sx{1.3}{$v\!=\!0$}} %central |
||
+ | \put(50,152){\sx{1.3}{$u\!=\!2$}} |
||
+ | \put(50,100){\sx{1.3}{$v\!=\!0$}} |
||
+ | \put(50,049){\sx{1.3}{$u\!=\!2$}} |
||
+ | % column<br> |
||
+ | \put(122,342){\sx{1.2}{$v\!=\!-0.2$}} |
||
+ | \put(135,314){\sx{1.2}{$u\!=\!1.8$}} |
||
+ | \put(252,314){\sx{1.2}{$u\!=\!1.2$}} |
||
+ | \put(136,265){\sx{1.2}{$v\!=\!0.2$}} |
||
+ | \put(125,210){\sx{1.2}{$u\!=\!2.2$}} |
||
+ | \put(125,130){\sx{1.2}{$v\!=\!-0.2$}} |
||
+ | \put(134,084){\sx{1.2}{$u\!=\!1.8$}} |
||
+ | \put(252,084){\sx{1.2}{$u\!=\!1.2$}} |
||
+ | \put(134,054){\sx{1.2}{$v\!=\!0.2$}} |
||
+ | % column<br> |
||
+ | \put(322,343){\sx{1.3}{$u\!=\!1$}} |
||
+ | \put(322,306){\sx{1.3}{$v\!=\!0$}} |
||
+ | \put(322,269){\sx{1.3}{$u\!=\!1$}} |
||
+ | \put(266,247){$u\!=\!0.8856031944$} |
||
+ | \put(332,231){\sx{1.3}{$v\!=\!0$}} %central |
||
+ | \put(329,164){\sx{1.3}{$v\!=\!0$}} %central |
||
+ | \put(322,137){\sx{1.3}{$u\!=\!1$}} |
||
+ | \put(322,100){\sx{1.3}{$v\!=\!0$}} |
||
+ | \put(322, 50){\sx{1.3}{$u\!=\!1$}} |
||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1<br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010superfae.pdf reprint, English version<br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010superfar.pdf reprint, Russian version<br> |
||
+ | D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Russian version: p.8-14) |
||
+ | |||
+ | ==Keywords== |
||
+ | «[[]]», |
||
+ | «[[SuperFactorial]]», |
||
+ | |||
+ | [[Category:ComplexMap]] |
||
+ | [[Category:ComplexMaps]] |
||
+ | [[Category:SuperFactorial]] |
||
+ | [[Category:Mathematical function]] |
||
+ | [[Category:Mathematical functions]] |
||
+ | [[Category:Superfunction]] |
||
+ | [[Category:Superfunctions]] |
Latest revision as of 00:10, 29 February 2024
Complex map of \(f=\)SuperFactorial(\(x\!+\!\mathrm i y\)) in the \(x,y\) plane.
Levels
\(u\!=\!\Re(f)=\)constant and
\(u\!=\!\Im(f)=\)constant are drawn.
Thick lines correspond to the integer values.
C++ generator of curves
Sorry, have misplaced the original generator. I load the code that does almost the same picture.
Files SuperFactorial.cin ado.cin conto.cin should be loaded to the working directory in order to compile the C++ code below:
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) // using namespace std; #include <complex> typedef std::complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "fac.cin" //#include "sinc.cin" #include "facp.cin" #include "afacc.cin" #include "superfactorial.cin" #include "conto.cin" int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; int M=403,M1=M+1; int N=401,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array // FILE *o;o=fopen("fig2b.eps","w");ado(o,402,402); FILE *o;o=fopen("SuperFacMap.eps","w");ado(o,402,402); fprintf(o,"201 201 translate\n 20 20 scale\n"); // DO(m,M1)X[m]=-8.04+.04*(m+.5); DO(m,M1){t=-1.+.022*m; X[m]=.2+t-1.11*exp(-1.9*t);} // DO(n,N1)Y[n]=-8.04+.04*(n+.5); DO(n,N1){t=-8.04+.04*(n+.5); t*=.97; Y[n]=t-.25*sin(0.6127874523307*t);} for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} for(n=-8;n<9;n++){ M( -8,n)L(8,n)} fprintf(o,".008 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); // c=afacc(z); // c=fac(z); c=superfac(z); // p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.; p=Re(c);q=Im(c); if(p>-20 && p<20 && // (fabs(y)>.034 ||x>-.9 ||fabs(x-int(x))>1.e-3) && q>-20 && q<20 && fabs(q)> 1.e-16 ) {g[m*N1+n]=p;f[m*N1+n]=q;} }} //fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.8;q=.7; fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.4;q=.8; for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .5 0 RGB S\n"); for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .8 0 0 RGB S\n"); for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .8 RGB S\n"); for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".04 W .8 0 0 RGB S\n"); for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 .8 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-9,9); fprintf(o,".04 W .5 0 .5 RGB S\n"); for(m=-14;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n"); m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-9,9); fprintf(o,".04 W 0 0 0 RGB S\n"); for(m=1;m<17;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n"); //#include"plofu.cin" // x=0.8856031944; conto(o,g,w,v,X,Y,M,N,0.8856031944,-p,p); fprintf(o,".004 W .2 .2 0 RGB S\n"); /* M(x,-8)L(x,8) fprintf(o,"0 setlinejoin 0 setlinecap 0.004 W 0 0 0 RGB S\n"); M(x,0)L(-8.1,0) fprintf(o," .05 W 1 1 1 RGB S\n"); DO(m,23){ M(x-.4*m,0)L(x-.4*(m+.5),0);} fprintf(o,".09 W .3 .3 0 RGB S\n"); //M(x,0)L(-8.1,0) fprintf(o,"[.19 .21]0 setdash .05 W 0 0 0 RGB S\n"); // May it be, that, some printers do not interpret well the dashing ? */ fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf SuperFacMap.eps"); system( "open SuperFacMap.pdf"); //for LINUX // getchar(); system("killall Preview");//for mac }
generator of labels
\documentclass[12pt]{article}
\paperwidth 342pt
\paperheight 338pt
\textwidth 500pt
\textheight 500pt
\topmargin -106pt
\oddsidemargin -96pt
\parindent 0pt
\pagestyle{empty}
\usepackage {graphics}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\begin{document}
%\begin{picture}(1006,1006) \put(0,0){\ing{facit}}
\begin{picture}(362,362)
\put(0,0){\ing{SuperFacMap}}
\put(30,357){\sx{1.3}{$y$}}
\put(30,317){\sx{1.3}{$6$}}
\put(30,277){\sx{1.3}{$4$}}
\put(30,237){\sx{1.3}{$2$}}
\put(29,196){\sx{1.3}{$0$}}
\put(20,156){\sx{1.3}{$-2$}}
\put(20,116){\sx{1.3}{$-4$}}
\put(20,76){\sx{1.3}{$-6$}}
\put(20,36){\sx{1.3}{$-8$}}
\put(70,29){\sx{1.3}{$-6$}}
\put(110,29){\sx{1.3}{$-4$}}
\put(150,29){\sx{1.3}{$-2$}}
\put(198,29){\sx{1.3}{$0$}}
\put(238,29){\sx{1.3}{$2$}}
\put(278,29){\sx{1.3}{$4$}}
\put(318,29){\sx{1.3}{$6$}}
\put(354,29){\sx{1.3}{$x$}}
\put(50,344){\sx{1.3}{$u\!=\!2$}}
\put(50,306){\sx{1.3}{$v\!=\!0$}}
\put(50,255){\sx{1.3}{$u\!=\!2$}}
\put(50,204){\sx{1.3}{$v\!=\!0$}} %central
\put(50,152){\sx{1.3}{$u\!=\!2$}}
\put(50,100){\sx{1.3}{$v\!=\!0$}}
\put(50,049){\sx{1.3}{$u\!=\!2$}}
% column<br>
\put(122,342){\sx{1.2}{$v\!=\!-0.2$}}
\put(135,314){\sx{1.2}{$u\!=\!1.8$}}
\put(252,314){\sx{1.2}{$u\!=\!1.2$}}
\put(136,265){\sx{1.2}{$v\!=\!0.2$}}
\put(125,210){\sx{1.2}{$u\!=\!2.2$}}
\put(125,130){\sx{1.2}{$v\!=\!-0.2$}}
\put(134,084){\sx{1.2}{$u\!=\!1.8$}}
\put(252,084){\sx{1.2}{$u\!=\!1.2$}}
\put(134,054){\sx{1.2}{$v\!=\!0.2$}}
% column<br>
\put(322,343){\sx{1.3}{$u\!=\!1$}}
\put(322,306){\sx{1.3}{$v\!=\!0$}}
\put(322,269){\sx{1.3}{$u\!=\!1$}}
\put(266,247){$u\!=\!0.8856031944$}
\put(332,231){\sx{1.3}{$v\!=\!0$}} %central
\put(329,164){\sx{1.3}{$v\!=\!0$}} %central
\put(322,137){\sx{1.3}{$u\!=\!1$}}
\put(322,100){\sx{1.3}{$v\!=\!0$}}
\put(322, 50){\sx{1.3}{$u\!=\!1$}}
\end{picture}
\end{document}
References
http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1
http://mizugadro.mydns.jp/PAPERS/2010superfae.pdf reprint, English version
http://mizugadro.mydns.jp/PAPERS/2010superfar.pdf reprint, Russian version
D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Russian version: p.8-14)
Keywords
«[[]]», «SuperFactorial»,
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 706 × 706 (172 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: