Difference between revisions of "File:ZexIteT.jpg"
(Importing image file) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | [[Explicit plot]] of iterations of function [[Zex]] |
||
− | Importing image file |
||
+ | |||
+ | $ y=\mathrm{zex}^n(x)$ |
||
+ | |||
+ | for various number $n$ of iterates. Here, $\mathrm{zex}(z)\!=\!z\exp(z)$. The non-integer iterates are implemented through the [[superfunction]] of [[zex]] and its [[abelfunction]], named [[SuZex]] and [[AuZex]], as follows: |
||
+ | |||
+ | $ \mathrm{zex}^n(x)=\mathrm{SuZex}\Big(n+\mathrm{AuZex}(x)\Big)$ |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | |||
+ | // Files [[ado.cin]], [[Tania.cin]], [[LambertW.cin]], [[SuZex.cin]], [[AuZex.cin]] should be loaded to the working directory in order to compile the code below. |
||
+ | |||
+ | |||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include<complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | |||
+ | #include "Tania.cin" // need for LambertW |
||
+ | #include "LambertW.cin" // need for AuZex |
||
+ | #include "SuZex.cin" |
||
+ | #include "AuZex.cin" |
||
+ | #include "ado.cin" |
||
+ | #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); |
||
+ | |||
+ | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; FILE *o;o=fopen("ZexIte.eps","w"); ado(o,1204,1204); |
||
+ | fprintf(o,"2 2 translate\n 100 100 scale\n"); |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | for(n=0;n<13;n++) {M(0,n)L(12,n)} |
||
+ | for(m=0;m<13;m++) {M(m,0)L(m,12)} |
||
+ | M(M_E,0)L(M_E,1) M(0,M_E)L(1,M_E) fprintf(o,".01 W S\n"); |
||
+ | |||
+ | DO(m,700){x=.01 +.02*m; y=Re(LambertW(LambertW(x)));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 1 0 1 RGB S\n"); |
||
+ | DO(m,700){x=.01 +.02*m; y=Re(LambertW(x));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 1 0 1 RGB S\n"); |
||
+ | M(0,0) L(12.03,12.03) fprintf(o,".03 W 0 1 0 RGB S\n"); |
||
+ | DO(m,700){x=.01 +.02*m; y=Re(zex(x)); if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 0 1 0 RGB S\n"); |
||
+ | DO(m,700){x=.01 +.02*m; y=Re(zex(zex(x))); if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 0 1 0 RGB S\n"); |
||
+ | |||
+ | for(n=-10;n<11;n++){ |
||
+ | DO(m,700){x=.01 +.02*m; y=Re(auzex(x)); y=Re(suzex(.1*n+y)); if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} |
||
+ | fprintf(o,".023 W 0 0 0 RGB S\n"); |
||
+ | } |
||
+ | fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o); |
||
+ | system("epstopdf ZexIte.eps"); |
||
+ | system( "open ZexIte.pdf"); //for macintosh |
||
+ | getchar(); system("killall Preview"); // For macintosh |
||
+ | } |
||
+ | |||
+ | |||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | |||
+ | %<poem><nomathjax> |
||
+ | %<nowiki> %<br> |
||
+ | % file ZexIte.pdf should be generated with the code above in order to compile the Latex document below. %<br> |
||
+ | % Copyleft 2012 by Dmitrii Kouznetsov <br> % |
||
+ | \documentclass[12pt]{article} % <br> |
||
+ | \usepackage{geometry} % <br> |
||
+ | \usepackage{graphicx} % <br> |
||
+ | \usepackage{rotating} % <br> |
||
+ | \paperwidth 1208pt % <br> |
||
+ | \paperheight 1208pt % <br> |
||
+ | \topmargin -103pt % <br> |
||
+ | \oddsidemargin -73pt % <br> |
||
+ | \textwidth 1404pt % <br> |
||
+ | \textheight 1404pt % <br> |
||
+ | \pagestyle {empty} % <br> |
||
+ | \newcommand \sx {\scalebox} % <br> |
||
+ | \newcommand \rot {\begin{rotate}} % <br> |
||
+ | \newcommand \ero {\end{rotate}} % <br> |
||
+ | \newcommand \ing {\includegraphics} % <br> |
||
+ | \parindent 0pt% <br> |
||
+ | \pagestyle{empty} % <br> |
||
+ | \begin{document} % <br> |
||
+ | \begin{picture}(1202,1202) % <br> |
||
+ | %\put(10,10){\ing{IterPowPlot}} % <br> |
||
+ | %\put(10,10){\ing{IterEq2plot}} % <br> |
||
+ | \put(0,0){\ing{ZexIte}} % <br> |
||
+ | \put(11,1184){\sx{4.4}{$y$}} % <br> |
||
+ | \put(04,1090){\sx{4}{$11$}} % <br> |
||
+ | \put(04,990){\sx{4}{$10$}} % <br> |
||
+ | \put(11,890){\sx{4}{$9$}} % <br> |
||
+ | \put(11,790){\sx{4}{$8$}} % <br> |
||
+ | \put(11,690){\sx{4}{$7$}} % <br> |
||
+ | \put(11,590){\sx{4}{$6$}} % <br> |
||
+ | \put(11,490){\sx{4}{$5$}} % <br> |
||
+ | \put(11,390){\sx{4}{$4$}} % <br> |
||
+ | \put(11,290){\sx{4}{$3$}} % <br> |
||
+ | \put(11,190){\sx{4}{$2$}} % <br> |
||
+ | \put(11,090){\sx{4}{$1$}} % <br> |
||
+ | % <br> |
||
+ | \put(91,6){\sx{4}{$1$}} % <br> |
||
+ | \put(191,6){\sx{4}{$2$}} % <br> |
||
+ | \put(291,6){\sx{4}{$3$}} % <br> |
||
+ | \put(391,6){\sx{4}{$4$}} % <br> |
||
+ | \put(492,6){\sx{4}{$5$}} % <br> |
||
+ | \put(592,6){\sx{4}{$6$}} % <br> |
||
+ | \put(693,6){\sx{4}{$7$}} % <br> |
||
+ | \put(794,6){\sx{4}{$8$}} % <br> |
||
+ | \put(894,6){\sx{4}{$9$}} % <br> |
||
+ | \put(982,6){\sx{4}{$10$}} % <br> |
||
+ | \put(1082,6){\sx{4}{$11$}} % <br> |
||
+ | \put(1180,6){\sx{4.4}{$x$}} % <br> |
||
+ | % <br> |
||
+ | |||
+ | \put(116,1058){\sx{5}{\rot{88}$n\!=\!2$\ero}} % <br> |
||
+ | \put(182,1058){\sx{5}{\rot{88}$n\!=\!1$\ero}} % <br> |
||
+ | \put(141,706){\sx{4.5}{\rot{86}$y\!=\!\mathrm{zex}(x)$\ero}} % <br> |
||
+ | % |
||
+ | \put(512,1030){\sx{5}{\rot{72}$n\!=\!0.3$\ero}} % <br> |
||
+ | \put(629,1032){\sx{5}{\rot{64}$n\!=\!0.2$\ero}} % <br> |
||
+ | \put(804,1037){\sx{5}{\rot{56}$n\!=\!0.1$\ero}} % <br> |
||
+ | % <br> |
||
+ | \put(1072,1052){\sx{5}{\rot{44}$n\!=\!0$\ero}} % <br> |
||
+ | \put(772,752){\sx{5}{\rot{44}$y\!=\!x$\ero}} % <br> |
||
+ | % <br> |
||
+ | \put(1028,762){\sx{5}{\rot{32}$n\!=\!-0.1$\ero}} % <br> |
||
+ | \put(1014,590){\sx{5}{\rot{23}$n\!=\!-0.2$\ero}} % <br> |
||
+ | \put(1006,470){\sx{5}{\rot{17}$n\!=\!-0.3$\ero}} % <br> |
||
+ | % |
||
+ | \put(510,108){\sx{4.3}{\rot{3}$y\!=\!\mathrm{LambertW}(x)$\ero}} % <br> |
||
+ | \put(1010,142){\sx{5}{\rot{2}$n\!=\!-1$\ero}} % <br> |
||
+ | \put(1010,83){\sx{5}{\rot{1}$n\!=\!-2$\ero}} % <br> |
||
+ | %<br> |
||
+ | \end{picture} % <br> |
||
+ | \end{document} % <br> |
||
+ | %</nowiki> |
||
+ | </nomathjax> |
||
+ | </poem> |
||
+ | |||
+ | [[Category:Zex]] |
||
+ | [[Category:LambertW]] |
||
+ | [[Category:Iteration]] |
||
+ | [[Category:SuperFunction]] |
||
+ | [[Category:AbelFunction]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
Latest revision as of 10:31, 20 July 2020
Explicit plot of iterations of function Zex
$ y=\mathrm{zex}^n(x)$
for various number $n$ of iterates. Here, $\mathrm{zex}(z)\!=\!z\exp(z)$. The non-integer iterates are implemented through the superfunction of zex and its abelfunction, named SuZex and AuZex, as follows:
$ \mathrm{zex}^n(x)=\mathrm{SuZex}\Big(n+\mathrm{AuZex}(x)\Big)$
C++ generator of curves
// Files ado.cin, Tania.cin, LambertW.cin, SuZex.cin, AuZex.cin should be loaded to the working directory in order to compile the code below.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include<complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.)
#include "Tania.cin" // need for LambertW #include "LambertW.cin" // need for AuZex #include "SuZex.cin" #include "AuZex.cin" #include "ado.cin" #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; FILE *o;o=fopen("ZexIte.eps","w"); ado(o,1204,1204); fprintf(o,"2 2 translate\n 100 100 scale\n"); fprintf(o,"1 setlinejoin 2 setlinecap\n"); for(n=0;n<13;n++) {M(0,n)L(12,n)} for(m=0;m<13;m++) {M(m,0)L(m,12)} M(M_E,0)L(M_E,1) M(0,M_E)L(1,M_E) fprintf(o,".01 W S\n"); DO(m,700){x=.01 +.02*m; y=Re(LambertW(LambertW(x)));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 1 0 1 RGB S\n"); DO(m,700){x=.01 +.02*m; y=Re(LambertW(x));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 1 0 1 RGB S\n"); M(0,0) L(12.03,12.03) fprintf(o,".03 W 0 1 0 RGB S\n"); DO(m,700){x=.01 +.02*m; y=Re(zex(x)); if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 0 1 0 RGB S\n"); DO(m,700){x=.01 +.02*m; y=Re(zex(zex(x))); if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 0 1 0 RGB S\n");
for(n=-10;n<11;n++){ DO(m,700){x=.01 +.02*m; y=Re(auzex(x)); y=Re(suzex(.1*n+y)); if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".023 W 0 0 0 RGB S\n"); } fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o); system("epstopdf ZexIte.eps"); system( "open ZexIte.pdf"); //for macintosh getchar(); system("killall Preview"); // For macintosh }
Latex generator of labels
%
% %<br>
% file ZexIte.pdf should be generated with the code above in order to compile the Latex document below. %<br>
% Copyleft 2012 by Dmitrii Kouznetsov <br> %
\documentclass[12pt]{article} % <br>
\usepackage{geometry} % <br>
\usepackage{graphicx} % <br>
\usepackage{rotating} % <br>
\paperwidth 1208pt % <br>
\paperheight 1208pt % <br>
\topmargin -103pt % <br>
\oddsidemargin -73pt % <br>
\textwidth 1404pt % <br>
\textheight 1404pt % <br>
\pagestyle {empty} % <br>
\newcommand \sx {\scalebox} % <br>
\newcommand \rot {\begin{rotate}} % <br>
\newcommand \ero {\end{rotate}} % <br>
\newcommand \ing {\includegraphics} % <br>
\parindent 0pt% <br>
\pagestyle{empty} % <br>
\begin{document} % <br>
\begin{picture}(1202,1202) % <br>
%\put(10,10){\ing{IterPowPlot}} % <br>
%\put(10,10){\ing{IterEq2plot}} % <br>
\put(0,0){\ing{ZexIte}} % <br>
\put(11,1184){\sx{4.4}{$y$}} % <br>
\put(04,1090){\sx{4}{$11$}} % <br>
\put(04,990){\sx{4}{$10$}} % <br>
\put(11,890){\sx{4}{$9$}} % <br>
\put(11,790){\sx{4}{$8$}} % <br>
\put(11,690){\sx{4}{$7$}} % <br>
\put(11,590){\sx{4}{$6$}} % <br>
\put(11,490){\sx{4}{$5$}} % <br>
\put(11,390){\sx{4}{$4$}} % <br>
\put(11,290){\sx{4}{$3$}} % <br>
\put(11,190){\sx{4}{$2$}} % <br>
\put(11,090){\sx{4}{$1$}} % <br>
% <br>
\put(91,6){\sx{4}{$1$}} % <br>
\put(191,6){\sx{4}{$2$}} % <br>
\put(291,6){\sx{4}{$3$}} % <br>
\put(391,6){\sx{4}{$4$}} % <br>
\put(492,6){\sx{4}{$5$}} % <br>
\put(592,6){\sx{4}{$6$}} % <br>
\put(693,6){\sx{4}{$7$}} % <br>
\put(794,6){\sx{4}{$8$}} % <br>
\put(894,6){\sx{4}{$9$}} % <br>
\put(982,6){\sx{4}{$10$}} % <br>
\put(1082,6){\sx{4}{$11$}} % <br>
\put(1180,6){\sx{4.4}{$x$}} % <br>
% <br>
\put(116,1058){\sx{5}{\rot{88}$n\!=\!2$\ero}} % <br>
\put(182,1058){\sx{5}{\rot{88}$n\!=\!1$\ero}} % <br>
\put(141,706){\sx{4.5}{\rot{86}$y\!=\!\mathrm{zex}(x)$\ero}} % <br>
%
\put(512,1030){\sx{5}{\rot{72}$n\!=\!0.3$\ero}} % <br>
\put(629,1032){\sx{5}{\rot{64}$n\!=\!0.2$\ero}} % <br>
\put(804,1037){\sx{5}{\rot{56}$n\!=\!0.1$\ero}} % <br>
% <br>
\put(1072,1052){\sx{5}{\rot{44}$n\!=\!0$\ero}} % <br>
\put(772,752){\sx{5}{\rot{44}$y\!=\!x$\ero}} % <br>
% <br>
\put(1028,762){\sx{5}{\rot{32}$n\!=\!-0.1$\ero}} % <br>
\put(1014,590){\sx{5}{\rot{23}$n\!=\!-0.2$\ero}} % <br>
\put(1006,470){\sx{5}{\rot{17}$n\!=\!-0.3$\ero}} % <br>
%
\put(510,108){\sx{4.3}{\rot{3}$y\!=\!\mathrm{LambertW}(x)$\ero}} % <br>
\put(1010,142){\sx{5}{\rot{2}$n\!=\!-1$\ero}} % <br>
\put(1010,83){\sx{5}{\rot{1}$n\!=\!-2$\ero}} % <br>
%<br>
\end{picture} % <br>
\end{document} % <br>
%
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 2,508 × 2,508 (973 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file: