Difference between revisions of "File:ExpIte4T.jpg"
(One intermediate revision by one other user not shown) | |||
Line 67: | Line 67: | ||
==[[Latex]] Generator of labels== |
==[[Latex]] Generator of labels== |
||
− | %<nowiki> %<br> |
+ | %<poem><nomathjax><nowiki> %<br> |
− | % file |
+ | % file *.pdf should be generated with the code above in order to compile the Latex document below. %<br> |
% Copyleft 2012 by Dmitrii Kouznetsov <br> % |
% Copyleft 2012 by Dmitrii Kouznetsov <br> % |
||
\documentclass[12pt]{article} % <br> |
\documentclass[12pt]{article} % <br> |
||
Line 136: | Line 136: | ||
\end{picture} % <br> |
\end{picture} % <br> |
||
\end{document} % <br> |
\end{document} % <br> |
||
− | %</nowiki> |
+ | %</nowiki></nomathjax></poem> |
+ | ==References== |
||
+ | <references/> |
||
+ | http://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf Walter Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188. |
||
+ | |||
+ | http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br> |
||
+ | http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf <br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D. Kouznetsov. Solution of F(x+1)=exp(F(x)) in complex z-plane. 78, (2009), 1647-1670 |
||
+ | |||
+ | http://www.ils.uec.ac.jp.jp/~dima/PAPERS/2009vladie.pdf (English) <br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf (English) <br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf (Russian version) <br> |
||
+ | D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. |
||
+ | |||
+ | http://reference.wolfram.com/mathematica/ref/Nest.html Nest, Wolfram Mathematica 9 Documentation center, 2013 |
||
+ | |||
⚫ | |||
⚫ | |||
⚫ | |||
[[Category:Exp]] |
[[Category:Exp]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:Latex]] |
||
[[Category:Log]] |
[[Category:Log]] |
||
+ | [[Category:Iterate]] |
||
[[Category:Iteration]] |
[[Category:Iteration]] |
||
[[Category:Iteration of exp]] |
[[Category:Iteration of exp]] |
||
Line 146: | Line 167: | ||
[[Category:Superfunction]] |
[[Category:Superfunction]] |
||
[[Category:Transfer function]] |
[[Category:Transfer function]] |
||
⚫ | |||
⚫ | |||
⚫ |
Latest revision as of 08:35, 1 December 2018
iterations of exp: $y\!=\!\exp^n(x)$ for various values of $n$.
For non-integer values of $n$, the evaluation is performed using tetration and ArcTetration funcitons,
$y\!=\!\exp^n(x)=\mathrm{tet}\Big(n+\mathrm{ate}(x)\Big)$
C++ generator of curves
// Files ado.cin, fsexp.cin, fslog.cin //should be loaded to the working directory in order to compile the code below.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include<complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.)
//#include "Tania.cin" // need for LambertW //#include "LambertW.cin" // need for AuZex //#include "SuZex.cin" //#include "AuZex.cin" #include "fsexp.cin" #include "fslog.cin"
// z_type tra(z_type z){ return exp(z)+z;} // z_type F(z_type z){ return log(suzex(z));} // z_type G(z_type z){ return auzex(exp(z));}
#include "ado.cin" #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; FILE *o;o=fopen("ExpIte4.eps","w"); ado(o,804,804); fprintf(o,"402 402 translate\n 100 100 scale\n"); fprintf(o,"1 setlinejoin 2 setlinecap\n"); for(n=-4;n<5;n++) {M(-4,n)L(4,n)} for(m=-4;m<5;m++) {M(m,-4)L(m,4)} // M(M_E,0)L(M_E,1) M(0,M_E)L(1,M_E) fprintf(o,".004 W S\n"); // DO(m,700){x=.01 +.02*m; y=Re(LambertW(LambertW(x)));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 1 0 0 RGB S\n"); // DO(m,700){x=.01 +.02*m; y=Re(LambertW(x));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 1 .5 0 RGB S\n"); // M(0,0) L(12.03,12.03) fprintf(o,".04 W 0 1 0 RGB S\n"); DO(m,700){x=-4.02+.02*m; y=exp(x); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 0 1 0 RGB S\n"); DO(m,700){x=-4.02+.02*m; y=exp(exp(x)); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 0 1 0 RGB S\n"); DO(m,700){x=-4.02+.02*m; y=exp(exp(exp(x)));if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 0 1 0 RGB S\n"); DO(m,700){y=-4.02+.02*m; x=exp(y); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 1 0 1 RGB S\n"); DO(m,700){y=-4.02+.02*m; x=exp(exp(y)); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 1 0 1 RGB S\n"); DO(m,700){y=-4.02+.02*m; x=exp(exp(exp(y)));if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;} fprintf(o,".032 W 1 0 1 RGB S\n"); for(n=0;n<34;n+=1) {DO(m,700){x=-4.01 +.02*m; y=Re(FSLOG(x)); y=Re(FSEXP(.1*n+y)); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;}} for(n=-33;n<0;n+=1){t=Re(FSEXP( FSLOG(-4.)-.1*n)); DO(m,700){x=t +.02*m; y=Re(FSLOG(x)); y=Re(FSEXP(.1*n+y)); if(m==0) M(x,y) else L(x,y) if(x>4.03||y>4.03) break;}} fprintf(o,".01 W 0 0 0 RGB S\n"); fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o); system("epstopdf ExpIte4.eps"); system( "open ExpIte4.pdf"); //for macintosh getchar(); system("killall Preview"); // For macintosh }
Latex Generator of labels
%
%<br>
% file *.pdf should be generated with the code above in order to compile the Latex document below. %<br>
% Copyleft 2012 by Dmitrii Kouznetsov <br> %
\documentclass[12pt]{article} % <br>
\usepackage{geometry} % <br>
\usepackage{graphicx} % <br>
\usepackage{rotating} % <br>
\paperwidth 806pt % <br>
\paperheight 806pt % <br>
\topmargin -105pt % <br>
\oddsidemargin -73pt % <br>
\textwidth 1100pt % <br>
\textheight 1100pt % <br>
\pagestyle {empty} % <br>
\newcommand \sx {\scalebox} % <br>
\newcommand \rot {\begin{rotate}} % <br>
\newcommand \ero {\end{rotate}} % <br>
\newcommand \ing {\includegraphics} % <br>
\parindent 0pt% <br>
\pagestyle{empty} % <br>
\begin{document} % <br>
\begin{picture}(802,802) % <br>
%\put(10,10){\ing{PowPlo}} % <br>
%\put(0,0){\ing{TraItu3}} % <br>
\put(0,0){\ing{ExpIte4}} % <br>
\put(411,788){\sx{3}{$y$}} % <br>
\put(411,693.6){\sx{2.9}{$3$}} % <br>
\put(411,593.4){\sx{2.9}{$2$}} % <br>
\put(411,493.2){\sx{2.9}{$1$}} % <br>
\put(411,393){\sx{2.9}{$0$}} % <br>
\put(407,292.8){\sx{2.9}{$-1$}} % <br>
\put(407,192.6){\sx{2.9}{$-2$}} % <br>
\put(407,092.4){\sx{2.9}{$-3$}} % <br>
% <br>
\put(081,408){\sx{2.9}{$-3$}} % <br>
\put(181,408){\sx{2.9}{$-2$}} % <br>
\put(281,408){\sx{2.9}{$-1$}} % <br>
\put(396,408){\sx{2.9}{$0$}} % <br>
\put(497,408){\sx{2.9}{$1$}} % <br>
\put(597,408){\sx{2.9}{$2$}} % <br>
\put(697,408){\sx{2.9}{$3$}} % <br>
\put(787,408){\sx{3}{$x$}} % <br>
% <br>
\put(6,748){\sx{3}{\rot{4}$n\!=\!3.2$\ero}} % <br>
\put(6,708){\sx{3}{\rot{3}$n\!=\!3.1$\ero}} % <br>
\put(6,675){\sx{3}{\rot{3}$n\!=\!3$\ero}} % <br>
\put(5,643){\sx{3}{\rot{3}$n\!=\!2.9$\ero}} % <br>
\put(6,345){\sx{3}{\rot{1}$n\!=\!0.6$\ero}} % <br>
%
\put(7,308){\sx{3}{\rot{4}$n\!=\!0.4$\ero}} % <br>
\put(7,280){\sx{3}{\rot{5}$n\!=\!0.3$\ero}} % <br>
\put(8,242){\sx{3}{\rot{9}$n\!=\!0.2$\ero}} % <br>
\put(9,185){\sx{3}{\rot{11}$n\!=\!0.1$\ero}} % <br>
% <br>
\put(50,36){\sx{3}{\rot{45}$n\!=\!0$\ero}} % <br>
% <br>
\put(202,5){\sx{3}{\rot{76}$n\!=\!-0.1$\ero}} % <br>
\put(263,5){\sx{3}{\rot{82}$n\!=\!-0.2$\ero}} % <br>
\put(299,5){\sx{3}{\rot{84}$n\!=\!-0.3$\ero}} % <br>
\put(691,5){\sx{3}{\rot{84}$n\!=\!-3$\ero}} % <br>
\put(724,5){\sx{3}{\rot{83}$n\!=\!-3.1$\ero}} % <br>
\put(764,5){\sx{3}{\rot{82}$n\!=\!-3.2$\ero}} % <br>
% <br>
\put(480,600){\sx{3.6}{\rot{69}$y\!=\!\exp(x)$\ero}} % <br>
\put(641,630){\sx{3.4}{\rot{44}$y\!=\!x$\ero}} % <br>
\put(650,484){\sx{3.6}{\rot{19}$y\!=\!\ln(x)$\ero}} % <br>
\end{picture} % <br>
\end{document} % <br>
%
References
http://www.ams.org/journals/bull/1993-29-02/S0273-0979-1993-00432-4/S0273-0979-1993-00432-4.pdf Walter Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151-188.
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf D. Kouznetsov. Solution of F(x+1)=exp(F(x)) in complex z-plane. 78, (2009), 1647-1670
http://www.ils.uec.ac.jp.jp/~dima/PAPERS/2009vladie.pdf (English)
http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf (English)
http://mizugadro.mydns.jp/PAPERS/2009vladir.pdf (Russian version)
D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45.
http://reference.wolfram.com/mathematica/ref/Nest.html Nest, Wolfram Mathematica 9 Documentation center, 2013
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 1,673 × 1,673 (901 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 3 pages use this file: