Difference between revisions of "File:AsincplotT500.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | Explicit plot of functions [[ArcSinc]] (thick blue curve) and [[ArcCosc]] (thin red curve): |
||
− | Importing image file |
||
+ | |||
+ | $y=\mathrm{asinc}(x)~$ and $~ y=\mathrm{acosc}(x)~$ |
||
+ | |||
+ | For comparison, the two asymptotics of function ArcSinc are also plotted with thin black curves: |
||
+ | |||
+ | : $\displaystyle y~=~ \mathrm{Left}(x)~ =~ \mathrm{Namihei} ~-~ \sqrt{\frac{-~ 2}{\mathrm{Katsuo}} (x\!-\!\mathrm{Katsuo})} |
||
+ | ~+~ \frac{2(x\!-\!\mathrm{Katsuo})}{3~ \mathrm{Namihei}}$ |
||
+ | that aproximates ArcSinc in cicinity of Katsuo, id est, in the left hand side of the figure, and |
||
+ | : $y=\sqrt{6(1\!-\!x)}$ |
||
+ | that approximates ArcSinc in vicinity of unity, id est, in the right hand side of the figure. |
||
+ | |||
+ | ==[[asinc.cin]]== |
||
+ | |||
+ | z_type acos(z_type z){ |
||
+ | if(Im(z)<0){if(Re(z)>=0){return I*log( z + sqrt(z*z-1.) );} |
||
+ | else{return I*log( z - sqrt(z*z-1.) );}} |
||
+ | if(Re(z)>=0){return -I*log( z + sqrt(z*z-1.) );} |
||
+ | else {return -I*log( z - sqrt(z*z-1.) );} } |
||
+ | |||
+ | z_type asin(z_type z){ |
||
+ | if(Im(z)<0){if(Re(z)>=0){return M_PI/2.-I*log( z + sqrt(z*z-1.) );} |
||
+ | else {return M_PI/2.-I*log( z - sqrt(z*z-1.) );}} |
||
+ | if(Re(z)>=0){return M_PI/2.+I*log( z + sqrt(z*z-1.) );} |
||
+ | else {return M_PI/2.+I*log( z - sqrt(z*z-1.) );} } |
||
+ | |||
+ | z_type sinc(z_type z){ DB x=Re(z); DB y=Im(z); if(x*x+y*y>.01) return sin(z)/z; |
||
+ | z*=z; return 1.+z*(-1./6.+z*(1./120.+z*(-1./5040+z*(1./362880.)))); } |
||
+ | |||
+ | z_type sincp(z_type z){ DB x=Re(z); DB y=Im(z); z_type c; |
||
+ | if(x*x+y*y>.01) return (cos(z)-sinc(z))/z; |
||
+ | c=z*z; return z*(-1./3.+c*(1./30.+c*(-1./840.+c*(1./45630+c*(-1./399168.))))); } |
||
+ | |||
+ | DB Namihei=4.493409457909062; |
||
+ | DB Katsuo=-0.21723362821122164; |
||
+ | z_type asincL(z_type z){int n; z_type s=Namihei-sqrt((-2./Katsuo)*(z-Katsuo)); |
||
+ | DO(n,6)s+=(z-sinc(s))/sincp(s); return s;} |
||
+ | |||
+ | z_type asincU(z_type z){int n; z_type s=1.4*acos(z); |
||
+ | DO(n,6)s+=(z-sinc(s))/sincp(s); return s;} |
||
+ | |||
+ | z_type asinc(z_type z){DB x=Re(z),y=fabs(Im(z)); |
||
+ | if(y<1. && x<0. && x>-2.6 ) return asincL(z); |
||
+ | return asincU(z); } |
||
+ | |||
+ | ==C++ generator of curves== |
||
+ | // The [[asinc.cin]] above and [[acosc.cin]] and [[ado.cin]] <br> |
||
+ | // should be loaded in the working directory in order to compile the [[C++]] code below. |
||
+ | |||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "ado.cin" |
||
+ | #include "asinc.cin" |
||
+ | #include "acosc.cin" |
||
+ | |||
+ | #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); |
||
+ | #define S(x,y) fprintf(o,"S\n",); |
||
+ | |||
+ | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | DB Sazae= 2.798386045783887; // H |
||
+ | DB Tarao= -0.33650841691839534; // J |
||
+ | FILE *o;o=fopen("asincplot.eps","w");ado(o,220,470); |
||
+ | fprintf(o,"60 10 translate\n 100 100 scale\n"); |
||
+ | for(m=0;m<2;m++){M(m,0)L(m,4.5)} |
||
+ | for(n=0;n<5;n++){M(-.5,n)L(1.5,n)} |
||
+ | fprintf(o,"2 setlinecap .004 W 0 0 0 RGB S\n"); |
||
+ | for(m=-1;m<2;m++){M(.5+m,0)L(.5+m,4.5)} |
||
+ | for(n=0;n<5;n++){M(-.5,n+.5)L(1.5,n+.5)} |
||
+ | fprintf(o,"2 setlinecap .0008 W 0 0 0 RGB S\n"); |
||
+ | DB D=(1.-Katsuo)/1000.; |
||
+ | M(Katsuo,Namihei) DO(m,1000){x=Katsuo+D*(m+.5); y=Re(asinc(x)); L(x,y) } L(1,0) |
||
+ | fprintf(o,"1 setlinejoin 1 setlinecap .008 W 0 0 1 RGB S\n"); |
||
+ | M(Tarao,Sazae)DO(m,930){x=-.336+.002*m; y=Re(acosc(x)); L(x,y) } |
||
+ | fprintf(o,".002 W 1 0 0 RGB S\n"); |
||
+ | M(1,0) DO(m,90){x=1.-0.01*(m+.5); y=sqrt(6.*(1.-x)); L(x,y);} |
||
+ | fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | M(Katsuo,Namihei) DO(m,160){x=Katsuo+0.01*(m+.5); DB t=x-Katsuo; |
||
+ | y=Namihei-sqrt(-2./Katsuo*(x-Katsuo))+2.*(x-Katsuo)/3./Namihei ; L(x,y);} |
||
+ | fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | M(-.04,M_PI/2)L(.04,M_PI/2) |
||
+ | M(-.04,M_PI)L(.04,M_PI) |
||
+ | M(Katsuo,0)L(Katsuo,Namihei)L(0,Namihei) |
||
+ | fprintf(o,"2 setlinecap .002 W 0 0 0 RGB S\n"); |
||
+ | M(Tarao,0)L(Tarao,Sazae)L(0,Sazae) |
||
+ | fprintf(o,"2 setlinecap .001 W 0 0 0 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf asincplot.eps"); |
||
+ | system( "open asincplot.pdf"); |
||
+ | getchar(); system("killall Preview");//for mac |
||
+ | } |
||
+ | |||
+ | |||
+ | ==Latex generator of labels== |
||
+ | % File [[asincplot.pdf]] should be generated with the [[C++]] code above in order to compile the [[Latex]] document below. |
||
+ | |||
+ | %<nowiki><br> |
||
+ | % Copyleft 2012 by Dmitrii Kouznetsov %<br> |
||
+ | \documentclass[12pt]{article} %<br> |
||
+ | \usepackage{geometry} %<br> |
||
+ | \usepackage{graphicx} %<br> |
||
+ | \usepackage{rotating} %<br> |
||
+ | \paperwidth 406pt %<br> |
||
+ | \paperheight 970pt %<br> |
||
+ | \topmargin -90pt %<br> |
||
+ | \oddsidemargin -106pt %<br> |
||
+ | \textwidth 500pt %<br> |
||
+ | \textheight 990pt %<br> |
||
+ | \pagestyle {empty} %<br> |
||
+ | \newcommand \sx {\scalebox} %<br> |
||
+ | \newcommand \rot {\begin{rotate}} %<br> |
||
+ | \newcommand \ero {\end{rotate}} %<br> |
||
+ | \newcommand \ing {\includegraphics} %<br> |
||
+ | \begin{document} %<br> |
||
+ | \parindent 0pt \sx{2}{ \begin{picture}(430,490) %<br> |
||
+ | %\put(4,6){\ing{acosplot}} %<br> |
||
+ | % \put(4,6){\ing{aciplot}} %<br> |
||
+ | % \put(4,6){\ing{cohcplot}} %<br> |
||
+ | %\put(4,6){\ing{sazaecon}} %<br> |
||
+ | \put(4,6){\ing{asincplot}} %<br> |
||
+ | \put(66,488){\sx{1.8}{$y$}} %<br> |
||
+ | \put(66,467){\sx{1.4}{\bf 4.5}} %<br> |
||
+ | \put(67,456){\sx{1.3}{\rot{0}$\rm Namihei_1\!\approx\! 4.492$\ero}} %<br> |
||
+ | \put(66,411){\sx{1.8}{\bf 4}} %<br> |
||
+ | \put(66,361){\sx{1.4}{\bf 3.5}} %<br> |
||
+ | \put(68,327){\sx{1.7}{$\pi$}} %<br> |
||
+ | \put(65,310){\sx{1.8}{\bf 3}} %<br> |
||
+ | \put(66,292){\sx{1.3}{\rot{0}$\rm Sazae_1\!\approx \!2.798$\ero}} %<br> |
||
+ | \put(66,261){\sx{1.4}{\bf 2.5}} %<br> |
||
+ | \put(66,211){\sx{1.8}{\bf 2}} %<br> |
||
+ | \put(68,171){\sx{1.2}{$\pi/2$}} %<br> |
||
+ | \put(66,157){\sx{1.4}{\bf 1.5}} %<br> |
||
+ | \put(66,111){\sx{1.8}{\bf 1}} %<br> |
||
+ | \put(66, 61){\sx{1.4}{\bf 0.5}} %<br> |
||
+ | \put(33,19){\sx{1.3}{\rot{90}$\rm Tarao_1\!\approx -0.336$\ero}} %<br>\put(58, 20){\sx{1.7}{\bf 0}} %<br> |
||
+ | \put(48,17){\sx{1.3}{\rot{90}$\rm Katsuo_1\!\approx \!-0.217$\ero}} %<br>\put(58, 20){\sx{1.7}{\bf 0}} %<br> |
||
+ | \put( 58, 20){\sx{1.8}{\bf 0}} %<br> |
||
+ | \put(103, 20){\sx{1.4}{\bf 0.5}} %<br> |
||
+ | \put(201, 20){\sx{1.8}{$x$}} %<br> |
||
+ | \put(158, 20){\sx{1.8}{\bf 1}} %<br> |
||
+ | %\put(130, 210){\sx{.9}{\rot{-53}$y\!=\! \mathrm{Namihei}-\sqrt{2(\mathrm{Katsuo}\!+\!x)}$\ero}} %<br> |
||
+ | \put(140, 184){\sx{1.01}{\rot{-51}$y\!=\! \mathrm{Left}(x)$\ero}} %<br> |
||
+ | \put(127, 185){\sx{1.2}{\rot{-67}$y\!=\!\mathrm{asinc}(x)$\ero}} %<br> |
||
+ | \put(101, 190){\sx{0.99}{\rot{-65}$y\!=\!\sqrt{6(1\!-\!x)}$\ero}} %<br> |
||
+ | \put(83,135){\sx{1.1}{\rot{-39}$y\!=\!\mathrm{acosc}(x)$\ero}} %<br> |
||
+ | \end{picture} %<br> |
||
+ | } %<br> |
||
+ | \end{document} |
||
+ | %</nowiki> |
||
+ | |||
+ | ==Referrences== |
||
+ | <references/> |
||
+ | |||
+ | ==Keywords== |
||
+ | [[ArcSinc]] |
||
+ | |||
+ | [[Category:ArcSinc]] |
||
+ | [[Category:Sazae-san functions]] |
||
+ | [[Category:Explicit plots]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Guiding of waves between absorbing walls]] |
Latest revision as of 09:41, 21 June 2013
Explicit plot of functions ArcSinc (thick blue curve) and ArcCosc (thin red curve):
$y=\mathrm{asinc}(x)~$ and $~ y=\mathrm{acosc}(x)~$
For comparison, the two asymptotics of function ArcSinc are also plotted with thin black curves:
- $\displaystyle y~=~ \mathrm{Left}(x)~ =~ \mathrm{Namihei} ~-~ \sqrt{\frac{-~ 2}{\mathrm{Katsuo}} (x\!-\!\mathrm{Katsuo})}
~+~ \frac{2(x\!-\!\mathrm{Katsuo})}{3~ \mathrm{Namihei}}$ that aproximates ArcSinc in cicinity of Katsuo, id est, in the left hand side of the figure, and
- $y=\sqrt{6(1\!-\!x)}$
that approximates ArcSinc in vicinity of unity, id est, in the right hand side of the figure.
asinc.cin
z_type acos(z_type z){ if(Im(z)<0){if(Re(z)>=0){return I*log( z + sqrt(z*z-1.) );} else{return I*log( z - sqrt(z*z-1.) );}} if(Re(z)>=0){return -I*log( z + sqrt(z*z-1.) );} else {return -I*log( z - sqrt(z*z-1.) );} }
z_type asin(z_type z){ if(Im(z)<0){if(Re(z)>=0){return M_PI/2.-I*log( z + sqrt(z*z-1.) );} else {return M_PI/2.-I*log( z - sqrt(z*z-1.) );}} if(Re(z)>=0){return M_PI/2.+I*log( z + sqrt(z*z-1.) );} else {return M_PI/2.+I*log( z - sqrt(z*z-1.) );} }
z_type sinc(z_type z){ DB x=Re(z); DB y=Im(z); if(x*x+y*y>.01) return sin(z)/z; z*=z; return 1.+z*(-1./6.+z*(1./120.+z*(-1./5040+z*(1./362880.)))); }
z_type sincp(z_type z){ DB x=Re(z); DB y=Im(z); z_type c; if(x*x+y*y>.01) return (cos(z)-sinc(z))/z; c=z*z; return z*(-1./3.+c*(1./30.+c*(-1./840.+c*(1./45630+c*(-1./399168.))))); }
DB Namihei=4.493409457909062; DB Katsuo=-0.21723362821122164; z_type asincL(z_type z){int n; z_type s=Namihei-sqrt((-2./Katsuo)*(z-Katsuo)); DO(n,6)s+=(z-sinc(s))/sincp(s); return s;}
z_type asincU(z_type z){int n; z_type s=1.4*acos(z); DO(n,6)s+=(z-sinc(s))/sincp(s); return s;}
z_type asinc(z_type z){DB x=Re(z),y=fabs(Im(z)); if(y<1. && x<0. && x>-2.6 ) return asincL(z); return asincU(z); }
C++ generator of curves
// The asinc.cin above and acosc.cin and ado.cin
// should be loaded in the working directory in order to compile the C++ code below.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "ado.cin" #include "asinc.cin" #include "acosc.cin"
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); #define S(x,y) fprintf(o,"S\n",);
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; DB Sazae= 2.798386045783887; // H DB Tarao= -0.33650841691839534; // J FILE *o;o=fopen("asincplot.eps","w");ado(o,220,470); fprintf(o,"60 10 translate\n 100 100 scale\n"); for(m=0;m<2;m++){M(m,0)L(m,4.5)} for(n=0;n<5;n++){M(-.5,n)L(1.5,n)} fprintf(o,"2 setlinecap .004 W 0 0 0 RGB S\n"); for(m=-1;m<2;m++){M(.5+m,0)L(.5+m,4.5)} for(n=0;n<5;n++){M(-.5,n+.5)L(1.5,n+.5)} fprintf(o,"2 setlinecap .0008 W 0 0 0 RGB S\n"); DB D=(1.-Katsuo)/1000.; M(Katsuo,Namihei) DO(m,1000){x=Katsuo+D*(m+.5); y=Re(asinc(x)); L(x,y) } L(1,0) fprintf(o,"1 setlinejoin 1 setlinecap .008 W 0 0 1 RGB S\n"); M(Tarao,Sazae)DO(m,930){x=-.336+.002*m; y=Re(acosc(x)); L(x,y) } fprintf(o,".002 W 1 0 0 RGB S\n"); M(1,0) DO(m,90){x=1.-0.01*(m+.5); y=sqrt(6.*(1.-x)); L(x,y);} fprintf(o,".002 W 0 0 0 RGB S\n"); M(Katsuo,Namihei) DO(m,160){x=Katsuo+0.01*(m+.5); DB t=x-Katsuo; y=Namihei-sqrt(-2./Katsuo*(x-Katsuo))+2.*(x-Katsuo)/3./Namihei ; L(x,y);} fprintf(o,".002 W 0 0 0 RGB S\n"); M(-.04,M_PI/2)L(.04,M_PI/2) M(-.04,M_PI)L(.04,M_PI) M(Katsuo,0)L(Katsuo,Namihei)L(0,Namihei) fprintf(o,"2 setlinecap .002 W 0 0 0 RGB S\n"); M(Tarao,0)L(Tarao,Sazae)L(0,Sazae) fprintf(o,"2 setlinecap .001 W 0 0 0 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf asincplot.eps"); system( "open asincplot.pdf"); getchar(); system("killall Preview");//for mac }
Latex generator of labels
% File asincplot.pdf should be generated with the C++ code above in order to compile the Latex document below.
%<br> % Copyleft 2012 by Dmitrii Kouznetsov %<br> \documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \usepackage{graphicx} %<br> \usepackage{rotating} %<br> \paperwidth 406pt %<br> \paperheight 970pt %<br> \topmargin -90pt %<br> \oddsidemargin -106pt %<br> \textwidth 500pt %<br> \textheight 990pt %<br> \pagestyle {empty} %<br> \newcommand \sx {\scalebox} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \newcommand \ing {\includegraphics} %<br> \begin{document} %<br> \parindent 0pt \sx{2}{ \begin{picture}(430,490) %<br> %\put(4,6){\ing{acosplot}} %<br> % \put(4,6){\ing{aciplot}} %<br> % \put(4,6){\ing{cohcplot}} %<br> %\put(4,6){\ing{sazaecon}} %<br> \put(4,6){\ing{asincplot}} %<br> \put(66,488){\sx{1.8}{$y$}} %<br> \put(66,467){\sx{1.4}{\bf 4.5}} %<br> \put(67,456){\sx{1.3}{\rot{0}$\rm Namihei_1\!\approx\! 4.492$\ero}} %<br> \put(66,411){\sx{1.8}{\bf 4}} %<br> \put(66,361){\sx{1.4}{\bf 3.5}} %<br> \put(68,327){\sx{1.7}{$\pi$}} %<br> \put(65,310){\sx{1.8}{\bf 3}} %<br> \put(66,292){\sx{1.3}{\rot{0}$\rm Sazae_1\!\approx \!2.798$\ero}} %<br> \put(66,261){\sx{1.4}{\bf 2.5}} %<br> \put(66,211){\sx{1.8}{\bf 2}} %<br> \put(68,171){\sx{1.2}{$\pi/2$}} %<br> \put(66,157){\sx{1.4}{\bf 1.5}} %<br> \put(66,111){\sx{1.8}{\bf 1}} %<br> \put(66, 61){\sx{1.4}{\bf 0.5}} %<br> \put(33,19){\sx{1.3}{\rot{90}$\rm Tarao_1\!\approx -0.336$\ero}} %<br>\put(58, 20){\sx{1.7}{\bf 0}} %<br> \put(48,17){\sx{1.3}{\rot{90}$\rm Katsuo_1\!\approx \!-0.217$\ero}} %<br>\put(58, 20){\sx{1.7}{\bf 0}} %<br> \put( 58, 20){\sx{1.8}{\bf 0}} %<br> \put(103, 20){\sx{1.4}{\bf 0.5}} %<br> \put(201, 20){\sx{1.8}{$x$}} %<br> \put(158, 20){\sx{1.8}{\bf 1}} %<br> %\put(130, 210){\sx{.9}{\rot{-53}$y\!=\! \mathrm{Namihei}-\sqrt{2(\mathrm{Katsuo}\!+\!x)}$\ero}} %<br> \put(140, 184){\sx{1.01}{\rot{-51}$y\!=\! \mathrm{Left}(x)$\ero}} %<br> \put(127, 185){\sx{1.2}{\rot{-67}$y\!=\!\mathrm{asinc}(x)$\ero}} %<br> \put(101, 190){\sx{0.99}{\rot{-65}$y\!=\!\sqrt{6(1\!-\!x)}$\ero}} %<br> \put(83,135){\sx{1.1}{\rot{-39}$y\!=\!\mathrm{acosc}(x)$\ero}} %<br> \end{picture} %<br> } %<br> \end{document} %
Referrences
Keywords
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 843 × 2,014 (184 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: