Difference between revisions of "File:TaniaTaylor0T.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of the polynomial of 7th power |
||
− | Importing image file |
||
+ | : $ f=1 $ $ |
||
+ | +\frac{z}{2}$ $ |
||
+ | +\frac{z^2}{16}$ $ |
||
+ | -\frac{z^3}{192}$ $ |
||
+ | -\frac{z^4}{3072}$ $ |
||
+ | +\frac{13 z^5}{61440}$ $ |
||
+ | -\frac{47 z^6}{1474560}$ $ |
||
+ | +\frac{73 z^7}{41287680}$ |
||
+ | representing the truncated [[Taylor expansion]] of the [[Tania function]] at $z\!=\!0~$. |
||
+ | |||
+ | The function is shown in the coordinates |
||
+ | $x\!=\!\Re(z)$, |
||
+ | $y\!=\!\Im(z)$ for $|z|\!<\!7$ with <br> |
||
+ | lines $u\!=\Re(f)\!=\!\mathrm{const}~$ and |
||
+ | lines $v\!=\Im(f)\!=\!\mathrm{const}~$. |
||
+ | |||
+ | The range where the Taylor approximation returns less than 3 signifivant figures is shaded. |
||
+ | |||
+ | ==Generators== |
||
+ | |||
+ | The files [[ado.cin]] and [[conto.cin]] should be in the working directory. |
||
+ | |||
+ | ===Common headers=== |
||
+ | |||
+ | |||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | |||
+ | z_type ArcTania(z_type z) {return z + log(z) - 1. ;} |
||
+ | z_type ArcTaniap(z_type z) {return 1. + 1./z ;} |
||
+ | |||
+ | z_type TaniaTay(z_type z) { int n; z_type s; |
||
+ | s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456. |
||
+ | //+z*(7.3/4128768.) //some reserve term |
||
+ | )))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
+ | |||
+ | z_type TaniaTaylor(z_type z) { int n; z_type s; |
||
+ | s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456. |
||
+ | +z*(7.3/4128768.) //some reserve term |
||
+ | )))))); |
||
+ | // DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); |
||
+ | return s ; } |
||
+ | |||
+ | z_type TaniaNega(z_type z){int n;z_type s=exp(z-exp(z)+1.); |
||
+ | DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
+ | |||
+ | z_type TaniaNeg(z_type z){int n; z_type e=exp(1.+z); |
||
+ | return e*(1.+e*(-1.+e*(1.5+e*(-3.5 )))); } |
||
+ | // return e*(1.+e*(-1.+e*(1.5))); } |
||
+ | // return e*(1.+e*(-1.)); } |
||
+ | // return e; } |
||
+ | |||
+ | z_type TaniaBigI(z_type z){ int n; |
||
+ | z_type t=1.+z; |
||
+ | z_type L=log(t); |
||
+ | z_type x=L/t; |
||
+ | z_type m=1./L; |
||
+ | z_type s = t-L + x*(1. + x*( .5-m + x*( 1./3. + m*(-1.5+m) +x*( .25 +m*(-11./6.+m*(3.-m)) )))); |
||
+ | DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
+ | |||
+ | z_type TaniaBig1(z_type z){ |
||
+ | z_type t=1.+z; |
||
+ | z_type L=log(t); |
||
+ | z_type x=L/t; |
||
+ | z_type m=1./L; |
||
+ | z_type s = t-L + x*(1. + x*( .5-m + x*( 1./3. + m*(-1.5+m) +x*( .25 +m*(-11./6.+m*(3.-m)) )))); |
||
+ | return s ; } |
||
+ | |||
+ | z_type TaniaBig0(z_type z){int n;z_type L=log(z), s=z-L+1.; |
||
+ | s-=(1.-L)/z; return s ; } |
||
+ | |||
+ | z_type TaniaS(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); |
||
+ | s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. //+t*(-.9/28.) |
||
+ | ))))))); |
||
+ | DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; } |
||
+ | |||
+ | z_type TaniaSingu(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); |
||
+ | s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. +t*(-.9/28.) |
||
+ | ))))))); |
||
+ | } |
||
+ | |||
+ | z_type Tania(z_type z){ z_type t; |
||
+ | if( fabs(Im(z))< M_PI && Re(z)<-2.51) return TaniaNega(z); |
||
+ | if( abs(z)>7. || Re(z)>3.8 ) return TaniaBigI(z); |
||
+ | if( Im(z) > .7 ) return TaniaS(z); |
||
+ | if( Im(z) < -.7) return conj(TaniaS(conj(z))); |
||
+ | return TaniaTay(z); |
||
+ | } |
||
+ | |||
+ | ===Generator of shading=== |
||
+ | main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | int M=160,M1=M+1; |
||
+ | int N=161,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("taniataylor0d2.eps","w");ado(o,162,162); |
||
+ | fprintf(o,"81 81 translate\n 10 10 scale\n"); |
||
+ | DO(m,M1)X[m]=-8.+.1*(m); |
||
+ | DO(n,N1)Y[n]=-8.+.1*(n); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | c=TaniaTaylor(z); |
||
+ | d=Tania(z); |
||
+ | // c=ArcTania(c); |
||
+ | p=-log( abs(c-d) / (abs(c)+abs(d)) )/log(10.) ; |
||
+ | //p=Re(c);q=Im(c); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | }} |
||
+ | M(-8.1,-8.1)L(-8.1,8.1)L(8.1,8.1)L(8.1,-8.1) |
||
+ | fprintf(o,"C 1 .9 .9 RGB F\n"); |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=6;q=.5; |
||
+ | /* |
||
+ | conto(o,g,w,v,X,Y,M,N, (1),-p,p); fprintf(o,".1 W .6 .5 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (2),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | */ |
||
+ | conto(o,g,w,v,X,Y,M,N, (3),-p,p); fprintf(o,"C 1 1 1 RGB F\n"); |
||
+ | for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} |
||
+ | for(n=-8;n<9;n++){ M( -8,n)L(8,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | fprintf(o,".07 W 1 .5 0 RGB S\n"); |
||
+ | y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | fprintf(o,".07 W 0 .5 1 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf taniataylor0D2.eps"); |
||
+ | system( "open taniataylor0D2.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | |||
+ | ===Generator of curves=== |
||
+ | |||
+ | int M=160,M1=M+1; |
||
+ | int N=161,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("taniataylor0map.eps","w");ado(o,162,162); |
||
+ | fprintf(o,"81 81 translate\n 10 10 scale\n"); |
||
+ | DO(m,M1) X[m]=-8.+.1*(m); |
||
+ | DO(n,80)Y[n]=-8.+.1*n; |
||
+ | Y[80]=-.03; |
||
+ | Y[81]= .03; |
||
+ | for(n=82;n<N1;n++) Y[n]=-8.+.1*(n-1.); |
||
+ | for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} |
||
+ | for(n=-8;n<9;n++){ M( -8,n)L(8,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; //printf("%5.2f\n",x); |
||
+ | DO(n,N1){y=Y[n]; |
||
+ | if(x*x+y*y<49){ |
||
+ | z=z_type(x,y); |
||
+ | c=TaniaTaylor(z); p=Re(c);q=Im(c); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | } |
||
+ | }} |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=.6;q=.5; |
||
+ | for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".05 W .9 0 0 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 .9 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".05 W .6 0 .6 RGB S\n"); |
||
+ | for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 0 RGB S\n"); |
||
+ | y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | fprintf(o,".07 W 1 .5 0 RGB S\n"); |
||
+ | y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} |
||
+ | fprintf(o,".07 W 0 .5 1 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf taniataylor0map.eps"); |
||
+ | system( "open taniataylor0map.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | |||
+ | ===[[Latex]] generator of labels=== |
||
+ | <nowiki> |
||
+ | % Copyleft 2011 by Dmitrii Kouznetsov |
||
+ | \documentclass[12pt]{article} %<br> |
||
+ | \usepackage{geometry} %<br> |
||
+ | \usepackage{graphicx} %<br> |
||
+ | \usepackage{rotating} %<br> |
||
+ | \paperwidth 854pt %<br> |
||
+ | \paperheight 844pt %<br> |
||
+ | \topmargin -96pt %<br> |
||
+ | \oddsidemargin -98pt %<br> |
||
+ | \textwidth 1100pt %<br> |
||
+ | \textheight 1100pt %<br> |
||
+ | \pagestyle {empty} %<br> |
||
+ | \newcommand \sx {\scalebox} %<br> |
||
+ | \newcommand \rot {\begin{rotate}} %<br> |
||
+ | \newcommand \ero {\end{rotate}} %<br> |
||
+ | \newcommand \ing {\includegraphics} %<br> |
||
+ | \begin{document} %<br> |
||
+ | \sx{5}{ \begin{picture}(164,165) %<br> |
||
+ | \put(6,5){\ing{taniataylor0d2}} %<br> |
||
+ | \put(6,5){\ing{taniataylor0map}} %<br> |
||
+ | \put(2,162){\sx{.7}{$y$}} %<br> |
||
+ | \put(2,144){\sx{.6}{$6$}} %<br> |
||
+ | \put(2,124){\sx{.6}{$4$}} %<br> |
||
+ | \put(2,104){\sx{.6}{$2$}} %<br> |
||
+ | %\put(3,116){\sx{.6}{$\pi$ ~ \bf cut}} %<br> |
||
+ | %\put(23,100){\sx{.8}{$u\!=\!0$}} %<br> |
||
+ | \put(2, 84){\sx{.6}{$0$}} %<br> |
||
+ | \put(20, 84){\sx{.8}{$v\!=\!0$}} %<br> |
||
+ | %\put(23,68){\sx{.8}{$u\!=\!0$}} %<br> |
||
+ | \put(-3,64){\sx{.6}{$-2$}} %<br> |
||
+ | %\put(-3,53){\sx{.6}{$-\pi$ ~ \bf cut}} %<br> |
||
+ | \put(-3,44){\sx{.6}{$-4$}} %<br> |
||
+ | \put(-3,24){\sx{.6}{$-6$}} %<br> |
||
+ | \put( 22,0){\sx{.6}{$-6$}} %<br> |
||
+ | \put( 42,0){\sx{.6}{$-4$}} %<br> |
||
+ | \put( 62,0){\sx{.6}{$-2$}} %<br> |
||
+ | \put( 86,0){\sx{.6}{$0$}} %<br> |
||
+ | \put(106,0){\sx{.6}{$2$}} %<br> |
||
+ | \put(126,0){\sx{.6}{$4$}} %<br> |
||
+ | \put(146,0){\sx{.6}{$6$}} %<br> |
||
+ | \put(164,0){\sx{.7}{$x$}} %<br> |
||
+ | %\put(139,154){\rot{-6}\sx{.8}{$v\!=\!6$}\ero}%<br> |
||
+ | %\put(138,143){\rot{-6}\sx{.8}{$v\!=\!5$}\ero}%<br> |
||
+ | %\put(137,132){\rot{-6}\sx{.8}{$v\!=\!4$}\ero}%<br> |
||
+ | \put(136,121){\rot{-6}\sx{.8}{$v\!=\!3$}\ero}%<br> |
||
+ | \put(135,109){\rot{-5}\sx{.8}{$v\!=\!2$}\ero}%<br> |
||
+ | \put( 89, 80){\rot{85}\sx{.8}{$u\!=\!1$}\ero}%<br> |
||
+ | \put(106, 78){\rot{87}\sx{.8}{$u\!=\!2$}\ero}%<br> |
||
+ | \put(121, 78){\rot{89}\sx{.8}{$u\!=\!3$}\ero}%<br> |
||
+ | \put(134, 97){\rot{-4}\sx{.8}{$v\!=\!1$}\ero}%<br> |
||
+ | \put(134, 84){\rot{0}\sx{.8}{$v\!=\!0$}\ero}%<br> |
||
+ | \put(134, 72){\rot{3}\sx{.72}{$v\!=\!-\!1$}\ero}%<br> |
||
+ | \put(133, 60){\rot{3}\sx{.72}{$v\!=\!-\!2$}\ero}%<br> |
||
+ | \put(134, 48){\rot{3}\sx{.72}{$v\!=\!-\!3$}\ero}%<br> |
||
+ | %\put(135, 36){\rot{3}\sx{.72}{$v\!=\!-\!4$}\ero}%<br> |
||
+ | %\put(136, 25){\rot{3}\sx{.72}{$v\!=\!-\!5$}\ero}%<br> |
||
+ | %\put(137, 14){\rot{3}\sx{.72}{$v\!=\!-\!6$}\ero}%<br> |
||
+ | \end{picture} %<br> |
||
+ | } %<br> |
||
+ | \end{document} |
||
+ | </nowiki> |
||
+ | |||
+ | ===Generation of PNG=== |
||
+ | The pdf file created a the compilation of the latex source was converted to PNG with default resolution. |
||
+ | |||
+ | [[Category:Complex maps]] |
||
+ | [[Category:Tania function]] |
||
+ | [[Category:Taylor expansion]] |
Latest revision as of 09:39, 21 June 2013
Complex map of the polynomial of 7th power
- $ f=1 $ $
+\frac{z}{2}$ $ +\frac{z^2}{16}$ $ -\frac{z^3}{192}$ $ -\frac{z^4}{3072}$ $ +\frac{13 z^5}{61440}$ $ -\frac{47 z^6}{1474560}$ $ +\frac{73 z^7}{41287680}$ representing the truncated Taylor expansion of the Tania function at $z\!=\!0~$.
The function is shown in the coordinates
$x\!=\!\Re(z)$,
$y\!=\!\Im(z)$ for $|z|\!<\!7$ with
lines $u\!=\Re(f)\!=\!\mathrm{const}~$ and
lines $v\!=\Im(f)\!=\!\mathrm{const}~$.
The range where the Taylor approximation returns less than 3 signifivant figures is shaded.
Generators
The files ado.cin and conto.cin should be in the working directory.
Common headers
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin"
z_type ArcTania(z_type z) {return z + log(z) - 1. ;} z_type ArcTaniap(z_type z) {return 1. + 1./z ;}
z_type TaniaTay(z_type z) { int n; z_type s; s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456. //+z*(7.3/4128768.) //some reserve term )))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaTaylor(z_type z) { int n; z_type s; s=1.+z*(.5+z*(1./16.+z*(-1./192.+z*(-1./3072.+z*(1.3/6144.+z*(-4.7/147456. +z*(7.3/4128768.) //some reserve term )))))); // DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaNega(z_type z){int n;z_type s=exp(z-exp(z)+1.); DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaNeg(z_type z){int n; z_type e=exp(1.+z); return e*(1.+e*(-1.+e*(1.5+e*(-3.5 )))); } // return e*(1.+e*(-1.+e*(1.5))); } // return e*(1.+e*(-1.)); } // return e; }
z_type TaniaBigI(z_type z){ int n; z_type t=1.+z; z_type L=log(t); z_type x=L/t; z_type m=1./L; z_type s = t-L + x*(1. + x*( .5-m + x*( 1./3. + m*(-1.5+m) +x*( .25 +m*(-11./6.+m*(3.-m)) )))); DO(n,4) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaBig1(z_type z){ z_type t=1.+z; z_type L=log(t); z_type x=L/t; z_type m=1./L; z_type s = t-L + x*(1. + x*( .5-m + x*( 1./3. + m*(-1.5+m) +x*( .25 +m*(-11./6.+m*(3.-m)) )))); return s ; }
z_type TaniaBig0(z_type z){int n;z_type L=log(z), s=z-L+1.; s-=(1.-L)/z; return s ; }
z_type TaniaS(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. //+t*(-.9/28.) ))))))); DO(n,3) s+=(z-ArcTania(s))/ArcTaniap(s); return s ; }
z_type TaniaSingu(z_type z){int n; z_type s,t=z+z_type(2.,-M_PI);t*=2./9.; t=I*sqrt(t); s=-1.+t*(3.+t*(-3.+t*(.75+t*(.3+t*(.9/16.+t*(-.3/7.+t*(-12.51/224. +t*(-.9/28.) ))))))); }
z_type Tania(z_type z){ z_type t; if( fabs(Im(z))< M_PI && Re(z)<-2.51) return TaniaNega(z); if( abs(z)>7. || Re(z)>3.8 ) return TaniaBigI(z); if( Im(z) > .7 ) return TaniaS(z); if( Im(z) < -.7) return conj(TaniaS(conj(z))); return TaniaTay(z); }
Generator of shading
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; int M=160,M1=M+1; int N=161,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("taniataylor0d2.eps","w");ado(o,162,162); fprintf(o,"81 81 translate\n 10 10 scale\n"); DO(m,M1)X[m]=-8.+.1*(m); DO(n,N1)Y[n]=-8.+.1*(n); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); c=TaniaTaylor(z); d=Tania(z); // c=ArcTania(c); p=-log( abs(c-d) / (abs(c)+abs(d)) )/log(10.) ; //p=Re(c);q=Im(c); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} }} M(-8.1,-8.1)L(-8.1,8.1)L(8.1,8.1)L(8.1,-8.1) fprintf(o,"C 1 .9 .9 RGB F\n"); fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=6;q=.5; /* conto(o,g,w,v,X,Y,M,N, (1),-p,p); fprintf(o,".1 W .6 .5 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (2),-p,p); fprintf(o,".01 W 0 0 0 RGB S\n"); */ conto(o,g,w,v,X,Y,M,N, (3),-p,p); fprintf(o,"C 1 1 1 RGB F\n"); for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} for(n=-8;n<9;n++){ M( -8,n)L(8,n)} fprintf(o,".008 W 0 0 0 RGB S\n"); y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} fprintf(o,".07 W 1 .5 0 RGB S\n"); y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} fprintf(o,".07 W 0 .5 1 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf taniataylor0D2.eps"); system( "open taniataylor0D2.pdf"); getchar(); system("killall Preview"); }
Generator of curves
int M=160,M1=M+1; int N=161,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("taniataylor0map.eps","w");ado(o,162,162); fprintf(o,"81 81 translate\n 10 10 scale\n"); DO(m,M1) X[m]=-8.+.1*(m); DO(n,80)Y[n]=-8.+.1*n; Y[80]=-.03; Y[81]= .03; for(n=82;n<N1;n++) Y[n]=-8.+.1*(n-1.); for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}} for(n=-8;n<9;n++){ M( -8,n)L(8,n)} fprintf(o,".008 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; //printf("%5.2f\n",x); DO(n,N1){y=Y[n]; if(x*x+y*y<49){ z=z_type(x,y); c=TaniaTaylor(z); p=Re(c);q=Im(c); if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} } }} fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=.6;q=.5; for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .6 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .9 0 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .9 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".05 W .9 0 0 RGB S\n"); for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 .9 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".05 W .6 0 .6 RGB S\n"); for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".05 W 0 0 0 RGB S\n"); y= M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} y=-M_PI; for(m=0;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} fprintf(o,".07 W 1 .5 0 RGB S\n"); y= M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} y=-M_PI; for(m=2;m<60;m+=4) {x=-7.95+.1*m; M(x,y) L(x+.05,y)} fprintf(o,".07 W 0 .5 1 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf taniataylor0map.eps"); system( "open taniataylor0map.pdf"); getchar(); system("killall Preview"); }
Latex generator of labels
% Copyleft 2011 by Dmitrii Kouznetsov \documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \usepackage{graphicx} %<br> \usepackage{rotating} %<br> \paperwidth 854pt %<br> \paperheight 844pt %<br> \topmargin -96pt %<br> \oddsidemargin -98pt %<br> \textwidth 1100pt %<br> \textheight 1100pt %<br> \pagestyle {empty} %<br> \newcommand \sx {\scalebox} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \newcommand \ing {\includegraphics} %<br> \begin{document} %<br> \sx{5}{ \begin{picture}(164,165) %<br> \put(6,5){\ing{taniataylor0d2}} %<br> \put(6,5){\ing{taniataylor0map}} %<br> \put(2,162){\sx{.7}{$y$}} %<br> \put(2,144){\sx{.6}{$6$}} %<br> \put(2,124){\sx{.6}{$4$}} %<br> \put(2,104){\sx{.6}{$2$}} %<br> %\put(3,116){\sx{.6}{$\pi$ ~ \bf cut}} %<br> %\put(23,100){\sx{.8}{$u\!=\!0$}} %<br> \put(2, 84){\sx{.6}{$0$}} %<br> \put(20, 84){\sx{.8}{$v\!=\!0$}} %<br> %\put(23,68){\sx{.8}{$u\!=\!0$}} %<br> \put(-3,64){\sx{.6}{$-2$}} %<br> %\put(-3,53){\sx{.6}{$-\pi$ ~ \bf cut}} %<br> \put(-3,44){\sx{.6}{$-4$}} %<br> \put(-3,24){\sx{.6}{$-6$}} %<br> \put( 22,0){\sx{.6}{$-6$}} %<br> \put( 42,0){\sx{.6}{$-4$}} %<br> \put( 62,0){\sx{.6}{$-2$}} %<br> \put( 86,0){\sx{.6}{$0$}} %<br> \put(106,0){\sx{.6}{$2$}} %<br> \put(126,0){\sx{.6}{$4$}} %<br> \put(146,0){\sx{.6}{$6$}} %<br> \put(164,0){\sx{.7}{$x$}} %<br> %\put(139,154){\rot{-6}\sx{.8}{$v\!=\!6$}\ero}%<br> %\put(138,143){\rot{-6}\sx{.8}{$v\!=\!5$}\ero}%<br> %\put(137,132){\rot{-6}\sx{.8}{$v\!=\!4$}\ero}%<br> \put(136,121){\rot{-6}\sx{.8}{$v\!=\!3$}\ero}%<br> \put(135,109){\rot{-5}\sx{.8}{$v\!=\!2$}\ero}%<br> \put( 89, 80){\rot{85}\sx{.8}{$u\!=\!1$}\ero}%<br> \put(106, 78){\rot{87}\sx{.8}{$u\!=\!2$}\ero}%<br> \put(121, 78){\rot{89}\sx{.8}{$u\!=\!3$}\ero}%<br> \put(134, 97){\rot{-4}\sx{.8}{$v\!=\!1$}\ero}%<br> \put(134, 84){\rot{0}\sx{.8}{$v\!=\!0$}\ero}%<br> \put(134, 72){\rot{3}\sx{.72}{$v\!=\!-\!1$}\ero}%<br> \put(133, 60){\rot{3}\sx{.72}{$v\!=\!-\!2$}\ero}%<br> \put(134, 48){\rot{3}\sx{.72}{$v\!=\!-\!3$}\ero}%<br> %\put(135, 36){\rot{3}\sx{.72}{$v\!=\!-\!4$}\ero}%<br> %\put(136, 25){\rot{3}\sx{.72}{$v\!=\!-\!5$}\ero}%<br> %\put(137, 14){\rot{3}\sx{.72}{$v\!=\!-\!6$}\ero}%<br> \end{picture} %<br> } %<br> \end{document}
Generation of PNG
The pdf file created a the compilation of the latex source was converted to PNG with default resolution.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 851 × 841 (650 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: