Difference between revisions of "File:Superfactocomple1.png"
(more description, refs, keywords) |
|||
| Line 7: | Line 7: | ||
\(u\!=\!\Im(f)=\)constant are drawn.<br> |
\(u\!=\!\Im(f)=\)constant are drawn.<br> |
||
Thick lines correspond to the integer values. |
Thick lines correspond to the integer values. |
||
| + | |||
| + | [[SuperFactorial]], or [[SuFac]] is [[Superfunction]] of [[Factorial]]; |
||
| + | it is solution \(F\) of the [[Transfer equation]] |
||
| + | |||
| + | \[ |
||
| + | F(z\!+\!1)=\mathrm{Factorial} \big(F(z)\big) |
||
| + | \] |
||
| + | Here [[Factorial]] is treated as the [[Transfer function]]. |
||
| + | |||
| + | |||
| + | [[SuperFactorial]] can be expressed through the Mathematica [[Nest]] function, |
||
| + | |||
| + | [[SuperFactorial]] \((z) =\) [[Factorial]]\(^z(3) = \) [[Nest]] [ [[Factorial]], 3, \(z\) ] |
||
| + | |||
| + | In Century 21, the [[Nest]] function is implemented only for the case when number \(z\) of the iterate can be simplified to a positive integer constant. |
||
| + | |||
| + | The complex double implementation of [[SuperFactorial]] of complex argument is described |
||
| + | in the [[Moscow University Physics Bulletin]], 2009 <ref> |
||
| + | https://link.springer.com/article/10.3103/S0027134910010029 <br> |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| + | </ref>, |
||
| + | in Russian version «[[Суперфункции]]» of book about [[Superfunctions]], 2014 <ref> |
||
| + | https://mizugadro.mydns.jp/BOOK/202.pdf |
||
| + | Дмитрий Кузнецов. «[[Суперфункции]]»,. [[Lambert Academic Publishing]], 2014. |
||
| + | Нецелые итерации голоморфных функций. |
||
| + | Тетрация и другие суперфункции. Формулы, |
||
| + | алгоритмы, графики и комплексные карты. |
||
| + | </ref> |
||
| + | and in the English version «[[Superfunctions]]», 2020 <ref name="bookA"> |
||
| + | https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas,algorithms,tables,graphics - [[Lambert Academic Publishing]], 2020/7/28 |
||
| + | </ref><ref name="bookM">https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). [[Superfunctions]]: Non-integer iterates of holomorphic functions. [[Tetration]] and other [[superfunction]]s. Formulas, algorithms, tables, graphics. Publisher: [[Lambert Academic Publishing]]. |
||
| + | </ref> |
||
| + | |||
| + | In particular, this map appears as the upper part of Fig.8.6 at page 96 of the Book <ref name="bookA"/><ref name="bookM"/><br> |
||
| + | in order to show the periodic properties of [[SuperFactorial]]. |
||
==C++ generator of curves== |
==C++ generator of curves== |
||
| − | Sorry, have misplaced the original generator. I load the code that does almost the same picture. |
||
Files |
Files |
||
| − | [[ |
+ | [[Superfactorial.cin]], |
| − | [[ado.cin]] |
+ | [[ado.cin]], |
[[conto.cin]] |
[[conto.cin]] |
||
should be loaded to the working directory in order to compile the [[C++]] code below: |
should be loaded to the working directory in order to compile the [[C++]] code below: |
||
| Line 165: | Line 201: | ||
==References== |
==References== |
||
| + | {{ref}} |
||
| − | <references/> |
||
| + | |||
| − | http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1<br> |
||
| + | {{fer}} |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
==Keywords== |
==Keywords== |
||
| − | «[[]]», |
+ | «[[Factorial]]», |
| + | «[[Square root of factorial]]», |
||
| + | «[[SuFac]]», |
||
«[[SuperFactorial]]», |
«[[SuperFactorial]]», |
||
| + | «[[Superfunctions]]», |
||
| + | |||
| + | «[[Корень из факториала]]», |
||
| + | «[[Суперфункции]]», |
||
| − | [[Category: |
+ | [[Category:Book]] |
| − | [[Category: |
+ | [[Category:BookMap]] |
| + | [[Category:Complex Map]] |
||
| + | [[Category:Holomorphic function]] |
||
| + | [[Category:Special function]] |
||
| + | [[Category:SuFac]] |
||
[[Category:SuperFactorial]] |
[[Category:SuperFactorial]] |
||
[[Category:Mathematical function]] |
[[Category:Mathematical function]] |
||
| − | [[Category:Mathematical functions]] |
||
[[Category:Superfunction]] |
[[Category:Superfunction]] |
||
[[Category:Superfunctions]] |
[[Category:Superfunctions]] |
||
Revision as of 17:34, 22 August 2025
Complex map of \(f=\)SuperFactorial(\(x\!+\!\mathrm i y\)) in the \(x,y\) plane.
Levels
\(u\!=\!\Re(f)=\)constant and
\(u\!=\!\Im(f)=\)constant are drawn.
Thick lines correspond to the integer values.
SuperFactorial, or SuFac is Superfunction of Factorial; it is solution \(F\) of the Transfer equation
\[ F(z\!+\!1)=\mathrm{Factorial} \big(F(z)\big) \] Here Factorial is treated as the Transfer function.
SuperFactorial can be expressed through the Mathematica Nest function,
SuperFactorial \((z) =\) Factorial\(^z(3) = \) Nest [ Factorial, 3, \(z\) ]
In Century 21, the Nest function is implemented only for the case when number \(z\) of the iterate can be simplified to a positive integer constant.
The complex double implementation of SuperFactorial of complex argument is described in the Moscow University Physics Bulletin, 2009 [1], in Russian version «Суперфункции» of book about Superfunctions, 2014 [2] and in the English version «Superfunctions», 2020 [3][4]
In particular, this map appears as the upper part of Fig.8.6 at page 96 of the Book [3][4]
in order to show the periodic properties of SuperFactorial.
C++ generator of curves
Files Superfactorial.cin, ado.cin, conto.cin should be loaded to the working directory in order to compile the C++ code below:
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
// using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "fac.cin"
//#include "sinc.cin"
#include "facp.cin"
#include "afacc.cin"
#include "superfactorial.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
int M=403,M1=M+1;
int N=401,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// FILE *o;o=fopen("fig2b.eps","w");ado(o,402,402);
FILE *o;o=fopen("SuperFacMap.eps","w");ado(o,402,402);
fprintf(o,"201 201 translate\n 20 20 scale\n");
// DO(m,M1)X[m]=-8.04+.04*(m+.5);
DO(m,M1){t=-1.+.022*m; X[m]=.2+t-1.11*exp(-1.9*t);}
// DO(n,N1)Y[n]=-8.04+.04*(n+.5);
DO(n,N1){t=-8.04+.04*(n+.5); t*=.97; Y[n]=t-.25*sin(0.6127874523307*t);}
for(m=-8;m<9;m++){if(m==0){M(m,-8.5)L(m,8.5)} else{M(m,-8)L(m,8)}}
for(n=-8;n<9;n++){ M( -8,n)L(8,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; //printf("%5.2f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
// c=afacc(z);
// c=fac(z);
c=superfac(z);
// p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.)-1.;
p=Re(c);q=Im(c);
if(p>-20 && p<20 &&
// (fabs(y)>.034 ||x>-.9 ||fabs(x-int(x))>1.e-3) &&
q>-20 && q<20 && fabs(q)> 1.e-16
)
{g[m*N1+n]=p;f[m*N1+n]=q;}
}}
//fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.8;q=.7;
fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=1.4;q=.8;
for(m=-4;m<4;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".01 W 0 .5 0 RGB S\n");
for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".01 W .8 0 0 RGB S\n");
for(m=0;m<4;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".01 W 0 0 .8 RGB S\n");
for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".04 W .8 0 0 RGB S\n");
for(m=1;m<15;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 .8 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-9,9); fprintf(o,".04 W .5 0 .5 RGB S\n");
for(m=-14;m<0;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n");
m=0; conto(o,g,w,v,X,Y,M,N, (0.+m),-9,9); fprintf(o,".04 W 0 0 0 RGB S\n");
for(m=1;m<17;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".04 W 0 0 0 RGB S\n");
//#include"plofu.cin"
// x=0.8856031944;
conto(o,g,w,v,X,Y,M,N,0.8856031944,-p,p); fprintf(o,".004 W .2 .2 0 RGB S\n");
/*
M(x,-8)L(x,8) fprintf(o,"0 setlinejoin 0 setlinecap 0.004 W 0 0 0 RGB S\n");
M(x,0)L(-8.1,0) fprintf(o," .05 W 1 1 1 RGB S\n");
DO(m,23){ M(x-.4*m,0)L(x-.4*(m+.5),0);} fprintf(o,".09 W .3 .3 0 RGB S\n");
//M(x,0)L(-8.1,0) fprintf(o,"[.19 .21]0 setdash .05 W 0 0 0 RGB S\n");
// May it be, that, some printers do not interpret well the dashing ?
*/
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf SuperFacMap.eps");
system( "open SuperFacMap.pdf"); //for LINUX
// getchar(); system("killall Preview");//for mac
}
generator of labels
\documentclass[12pt]{article}
\paperwidth 342pt
\paperheight 338pt
\textwidth 500pt
\textheight 500pt
\topmargin -106pt
\oddsidemargin -96pt
\parindent 0pt
\pagestyle{empty}
\usepackage {graphics}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\begin{document}
%\begin{picture}(1006,1006) \put(0,0){\ing{facit}}
\begin{picture}(362,362)
\put(0,0){\ing{SuperFacMap}}
\put(30,357){\sx{1.3}{$y$}}
\put(30,317){\sx{1.3}{$6$}}
\put(30,277){\sx{1.3}{$4$}}
\put(30,237){\sx{1.3}{$2$}}
\put(29,196){\sx{1.3}{$0$}}
\put(20,156){\sx{1.3}{$-2$}}
\put(20,116){\sx{1.3}{$-4$}}
\put(20,76){\sx{1.3}{$-6$}}
\put(20,36){\sx{1.3}{$-8$}}
\put(70,29){\sx{1.3}{$-6$}}
\put(110,29){\sx{1.3}{$-4$}}
\put(150,29){\sx{1.3}{$-2$}}
\put(198,29){\sx{1.3}{$0$}}
\put(238,29){\sx{1.3}{$2$}}
\put(278,29){\sx{1.3}{$4$}}
\put(318,29){\sx{1.3}{$6$}}
\put(354,29){\sx{1.3}{$x$}}
\put(50,344){\sx{1.3}{$u\!=\!2$}}
\put(50,306){\sx{1.3}{$v\!=\!0$}}
\put(50,255){\sx{1.3}{$u\!=\!2$}}
\put(50,204){\sx{1.3}{$v\!=\!0$}} %central
\put(50,152){\sx{1.3}{$u\!=\!2$}}
\put(50,100){\sx{1.3}{$v\!=\!0$}}
\put(50,049){\sx{1.3}{$u\!=\!2$}}
% column<br>
\put(122,342){\sx{1.2}{$v\!=\!-0.2$}}
\put(135,314){\sx{1.2}{$u\!=\!1.8$}}
\put(252,314){\sx{1.2}{$u\!=\!1.2$}}
\put(136,265){\sx{1.2}{$v\!=\!0.2$}}
\put(125,210){\sx{1.2}{$u\!=\!2.2$}}
\put(125,130){\sx{1.2}{$v\!=\!-0.2$}}
\put(134,084){\sx{1.2}{$u\!=\!1.8$}}
\put(252,084){\sx{1.2}{$u\!=\!1.2$}}
\put(134,054){\sx{1.2}{$v\!=\!0.2$}}
% column<br>
\put(322,343){\sx{1.3}{$u\!=\!1$}}
\put(322,306){\sx{1.3}{$v\!=\!0$}}
\put(322,269){\sx{1.3}{$u\!=\!1$}}
\put(266,247){$u\!=\!0.8856031944$}
\put(332,231){\sx{1.3}{$v\!=\!0$}} %central
\put(329,164){\sx{1.3}{$v\!=\!0$}} %central
\put(322,137){\sx{1.3}{$u\!=\!1$}}
\put(322,100){\sx{1.3}{$v\!=\!0$}}
\put(322, 50){\sx{1.3}{$u\!=\!1$}}
\end{picture}
\end{document}
References
- ↑
https://link.springer.com/article/10.3103/S0027134910010029
http://mizugadro.mydns.jp/PAPERS/2010superfae.pdf reprint, English version
http://mizugadro.mydns.jp/PAPERS/2010superfar.pdf reprint, Russian version
D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Russian version: p.8-14) - ↑ https://mizugadro.mydns.jp/BOOK/202.pdf Дмитрий Кузнецов. «Суперфункции»,. Lambert Academic Publishing, 2014. Нецелые итерации голоморфных функций. Тетрация и другие суперфункции. Формулы, алгоритмы, графики и комплексные карты.
- ↑ 3.0 3.1 https://www.amazon.co.jp/Superfunctions-Non-integer-holomorphic-functions-superfunctions/dp/6202672862 Dmitrii Kouznetsov. Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas,algorithms,tables,graphics - Lambert Academic Publishing, 2020/7/28
- ↑ 4.0 4.1 https://mizugadro.mydns.jp/BOOK/468.pdf Dmitrii Kouznetsov (2020). Superfunctions: Non-integer iterates of holomorphic functions. Tetration and other superfunctions. Formulas, algorithms, tables, graphics. Publisher: Lambert Academic Publishing.
Keywords
«Factorial», «Square root of factorial», «SuFac», «SuperFactorial», «Superfunctions»,
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 17:50, 20 June 2013 | 706 × 706 (172 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: