Difference between revisions of "File:Ack4d.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of [[tetration]] to base 10. |
||
− | Importing image file |
||
+ | |||
+ | $u+\mathrm i v=\mathrm{tet}_{10}(x\!+\!\mathrm i y)$ |
||
+ | |||
+ | Prepared as Figure 4d for publication in Journal [[Applied and Computational Mathematics]], but not used in the final version |
||
+ | <ref>http://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20140306.14.pdf |
||
+ | http://mizugadro.mydns.jp/PAPERS/2014acker.pdf |
||
+ | D.Kouznetsov. Evaluation of holomorphic ackermanns. Applied and Computational Mathematics. Vol. 3, No. 6, 2014, pp. 307-314. |
||
+ | </ref> |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | ==[[C++]] generator of map== |
||
+ | |||
+ | Files |
||
+ | [[ado.cin]], |
||
+ | [[conto.cin]], |
||
+ | [[filog.cin]], |
||
+ | [[f4ten.cin]], |
||
+ | [[GLxw2048.inc]], |
||
+ | [[f2048ten.inc]] |
||
+ | should be loaded in order to compile the code below |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | // using namespace std; |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | #include "filog.cin" |
||
+ | |||
+ | //z_type b=z_type( 1.5259833851700000, 0.0178411853321000); |
||
+ | z_type b=10.; |
||
+ | z_type a=log(b); |
||
+ | z_type Zo=Filog(a); |
||
+ | z_type Zc=conj(Filog(conj(a))); |
||
+ | DB A=32.; |
||
+ | |||
+ | /* |
||
+ | z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd; |
||
+ | #include "GLxw2048.inc" |
||
+ | int K=2048; |
||
+ | //#include "ima6.inc" |
||
+ | #include "TetSheldonIma.inc" |
||
+ | z_type E[2048],G[2048]; |
||
+ | DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);} |
||
+ | c=0.; |
||
+ | z+=z_type(0.1196573712872846, 0.1299776198056910); |
||
+ | DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | return c;} |
||
+ | */ |
||
+ | |||
+ | |||
+ | z_type f4ten(z_type z){ //NOT SHIFTED FOR x1 !!!! |
||
+ | #include "GLxw2048.inc" |
||
+ | z_type tenZo=z_type(-0.119193073414549, 0.750583293932439); |
||
+ | z_type tenZc=z_type(-0.119193073414549,-0.750583293932439); |
||
+ | |||
+ | DB Lten= 2.302585092994046; |
||
+ | z_type tenQ=z_type( 0.559580251215472, 1.728281903659204);// =L*Zo+log(L) |
||
+ | z_type tenT=z_type( 3.290552906607012, 1.065409768058325); |
||
+ | // #include "tenzo.inc" |
||
+ | #include"f2048ten.inc" |
||
+ | //Aten is defined there |
||
+ | int j,k,m,n; DB x,y, u, t; z_type c,d, cu,cd; |
||
+ | // z_type E[K],G[K]; |
||
+ | z_type E[2048],G[2048]; |
||
+ | DO(k,K){c=F[k];E[k]=log(c)/Lten;G[k]=exp(c*Lten);} |
||
+ | // the initioalization abouve should run at the compillation |
||
+ | c=0.; |
||
+ | DO(k,K){t=Aten*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-Aten)+z)/(z_type(1., Aten)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-Aten)-z)/(z_type(1., Aten)+z) ); |
||
+ | return c*(Aten/(2.*M_PI)) +tenZo*cu+tenZc*cd; |
||
+ | } |
||
+ | DB x1ten= 0.0377406857309657; |
||
+ | //#include "figx1ten.inc" |
||
+ | DB Lten=log(10.); |
||
+ | z_type F4TEN(z_type z){ DB x=Re(z); |
||
+ | // DB L=log(2.); |
||
+ | if(x<-.5) return log(F4TEN(z+1.))/Lten; |
||
+ | if(x> .5) return exp(F4TEN(z-1.)*Lten); |
||
+ | return f4ten(z+x1ten); |
||
+ | } |
||
+ | // f4ten end |
||
+ | |||
+ | int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | //int M=161,M1=M+1; |
||
+ | int M=601,M1=M+1; |
||
+ | int N=461,N1=N+1; |
||
+ | |||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("10.eps","w");ado(o,602,202); |
||
+ | fprintf(o,"301 101 translate\n 10 10 scale\n"); |
||
+ | DO(m,M1)X[m]=-30.+.1*(m); |
||
+ | DO(n,200)Y[n]=-10.+.05*n; |
||
+ | Y[200]=-.01; |
||
+ | Y[201]= .01; |
||
+ | for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.); |
||
+ | for(m=-30;m<31;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}} |
||
+ | for(n=-10;n<11;n++){ M( -30,n)L(30,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | |||
+ | DO(n,N1){y=Y[n]; |
||
+ | for(m=295;m<305;m++) |
||
+ | {x=X[m]; //printf("%5.2f\n",x); |
||
+ | z=z_type(x,y); |
||
+ | // c=tetb(z); |
||
+ | c=F4TEN(z); |
||
+ | p=Re(c);q=Im(c); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | d=c; |
||
+ | for(k=1;k<31;k++) |
||
+ | { m1=m+k*10; if(m1>M) break; |
||
+ | d=exp(a*d); |
||
+ | p=Re(d);q=Im(d); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} |
||
+ | } |
||
+ | d=c; |
||
+ | for(k=1;k<31;k++) |
||
+ | { m1=m-k*10; if(m1<0) break; |
||
+ | d=log(d)/a; |
||
+ | p=Re(d);q=Im(d); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} |
||
+ | } |
||
+ | }} |
||
+ | |||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1;q=.5; |
||
+ | for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n"); |
||
+ | for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n"); |
||
+ | // y= 0; for(m=0;m<260;m+=6) {x=-2.-.1*m; M(x,y) L(x-.1,y)} |
||
+ | // fprintf(o,".07 W 1 .5 0 RGB S\n"); |
||
+ | // y= 0; for(m=3;m<260;m+=6) {x=-2-.1*m; M(x,y) L(x-.1,y)} |
||
+ | // fprintf(o,".07 W 0 .5 1 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf 10.eps"); |
||
+ | system( "open 10.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass{amsproc} |
||
+ | \usepackage{graphicx} |
||
+ | \usepackage{rotating} |
||
+ | \usepackage{hyperref} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \rme {{\rm e}} %%makes the base of natural logarithms Roman font |
||
+ | %\newcommand \rme {{e}} %%makes the base of natural logarithms Italics font; choose one of these |
||
+ | \newcommand \rmi {{\rm i}} %%imaginary unity is always roman font |
||
+ | \newcommand \ds {\displaystyle} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \newcommand \ing \includegraphics |
||
+ | \usepackage{geometry} |
||
+ | \topmargin -94pt |
||
+ | %\topmargin -97pt |
||
+ | \oddsidemargin -87pt |
||
+ | \paperwidth 618pt |
||
+ | %\paperheight 216pt |
||
+ | \paperheight 212pt |
||
+ | \begin{document} |
||
+ | |||
+ | \newcommand \mapax { |
||
+ | \put(2,206){\sx{1.2}{$y$}} |
||
+ | \put(2,188){\sx{1.2}{$8$}} |
||
+ | \put(2,168){\sx{1.2}{$6$}} |
||
+ | \put(2,148){\sx{1.2}{$4$}} |
||
+ | \put(2,128){\sx{1.2}{$2$}} |
||
+ | \put(2,108){\sx{1.2}{$0$}} |
||
+ | \put(-6,88){\sx{1.2}{$-2$}} |
||
+ | \put(-6,68){\sx{1.2}{$-4$}} |
||
+ | \put(-6,48){\sx{1.2}{$-6$}} |
||
+ | \put(-6,28){\sx{1.2}{$-8$}} |
||
+ | \put(-1,1){\sx{1.2}{$-30$}} |
||
+ | \put( 49,1){\sx{1.2}{$-25$}} |
||
+ | \put( 99,1){\sx{1.2}{$-20$}} |
||
+ | \put(149,1){\sx{1.2}{$-15$}} |
||
+ | \put(199,1){\sx{1.2}{$-10$}} |
||
+ | \put(252,1){\sx{1.2}{$-5$}} |
||
+ | \put(309,1){\sx{1.2}{$0$}} |
||
+ | \put(329,1){\sx{1.2}{$2$}} |
||
+ | \put(349,1){\sx{1.2}{$4$}} |
||
+ | \put(369,1){\sx{1.2}{$6$}} |
||
+ | \put(389,1){\sx{1.2}{$8$}} |
||
+ | \put(407,1){\sx{1.2}{$10$}} |
||
+ | \put(457,1){\sx{1.2}{$15$}} |
||
+ | \put(507,1){\sx{1.2}{$20$}} |
||
+ | \put(557,1){\sx{1.2}{$25$}} |
||
+ | \put(607,1){\sx{1.2}{$x$}} |
||
+ | } |
||
+ | %\flushright{$b=\mathrm e \approx 2.71$} |
||
+ | %\sx{.586} |
||
+ | {\begin{picture}(620,212) %%%%%%%%%%%%%%%%%%%%%% |
||
+ | %\put(10,10){\ing{tetema}} \mapax |
||
+ | \put(10,10){\ing{10}} \mapax |
||
+ | |||
+ | %\multiput(110,118)(56.1,10.7){8}{\sx{1.2}{$u\!=\!0.8$}} |
||
+ | %\multiput(256,120)(56.1,10.7){7}{\sx{1.2}{\rot{20}$u\!=\!1$\ero}} |
||
+ | %\multiput(302,120)(56.1,10.2){7}{\sx{1.2}{\rot{0}$v\!=\!1$\ero}} |
||
+ | |||
+ | %\multiput(189,116)(44.7,10.5){9}{\sx{1.2}{$u\!=\!1.4$}} |
||
+ | \multiput(256,124)(33.2,10.7){8}{\sx{1.2}{$u\!=\!-1.2$}} |
||
+ | \put(25,108.4){\sx{1.4}{\bf cut}} \put(296,108.4){\sx{1.2}{$v\!=\!0$}} |
||
+ | \multiput(242,92)(33.2,-10.7){8}{\sx{1.2}{$v\!=\!-0.8$}} |
||
+ | %\multiput(193,93)(44.7,-10.5){8}{\sx{1.2}{$v\!=\!-1.4$}} |
||
+ | |||
+ | %\put(20,200){\sx{1.4}{$u+\mathrm i v \approx 0.31813150520 + 1.3372357014 \,\mathrm i$}} |
||
+ | %\put(30, 20){\sx{1.4}{$u+\mathrm i v \approx 0.31813150520 - 1.3372357014 \,\mathrm i$}} |
||
+ | \put(20,196){\sx{1.4}{$u+\mathrm i v \approx -0.11919307341+ 0.75058329393 \,\mathrm i$}} |
||
+ | \put(30, 20){\sx{1.4}{$u+\mathrm i v \approx -0.11919307341- 0.75058329393 \,\mathrm i$}} |
||
+ | \end{picture}} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | [[Category:Applied and Computational Mathematics]] |
||
+ | [[Category:AMS]] |
||
+ | [[Category:Base 10]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Complex map]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Tetration]] |
Latest revision as of 08:28, 1 December 2018
Complex map of tetration to base 10.
$u+\mathrm i v=\mathrm{tet}_{10}(x\!+\!\mathrm i y)$
Prepared as Figure 4d for publication in Journal Applied and Computational Mathematics, but not used in the final version [1]
References
- ↑ http://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20140306.14.pdf http://mizugadro.mydns.jp/PAPERS/2014acker.pdf D.Kouznetsov. Evaluation of holomorphic ackermanns. Applied and Computational Mathematics. Vol. 3, No. 6, 2014, pp. 307-314.
C++ generator of map
Files ado.cin, conto.cin, filog.cin, f4ten.cin, GLxw2048.inc, f2048ten.inc should be loaded in order to compile the code below
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
// using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "filog.cin"
//z_type b=z_type( 1.5259833851700000, 0.0178411853321000);
z_type b=10.;
z_type a=log(b);
z_type Zo=Filog(a);
z_type Zc=conj(Filog(conj(a)));
DB A=32.;
/*
z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd;
#include "GLxw2048.inc"
int K=2048;
//#include "ima6.inc"
#include "TetSheldonIma.inc"
z_type E[2048],G[2048];
DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);}
c=0.;
z+=z_type(0.1196573712872846, 0.1299776198056910);
DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
return c;}
*/
z_type f4ten(z_type z){ //NOT SHIFTED FOR x1 !!!!
#include "GLxw2048.inc"
z_type tenZo=z_type(-0.119193073414549, 0.750583293932439);
z_type tenZc=z_type(-0.119193073414549,-0.750583293932439);
DB Lten= 2.302585092994046;
z_type tenQ=z_type( 0.559580251215472, 1.728281903659204);// =L*Zo+log(L)
z_type tenT=z_type( 3.290552906607012, 1.065409768058325);
// #include "tenzo.inc"
#include"f2048ten.inc"
//Aten is defined there
int j,k,m,n; DB x,y, u, t; z_type c,d, cu,cd;
// z_type E[K],G[K];
z_type E[2048],G[2048];
DO(k,K){c=F[k];E[k]=log(c)/Lten;G[k]=exp(c*Lten);}
// the initioalization abouve should run at the compillation
c=0.;
DO(k,K){t=Aten*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-Aten)+z)/(z_type(1., Aten)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-Aten)-z)/(z_type(1., Aten)+z) );
return c*(Aten/(2.*M_PI)) +tenZo*cu+tenZc*cd;
}
DB x1ten= 0.0377406857309657;
//#include "figx1ten.inc"
DB Lten=log(10.);
z_type F4TEN(z_type z){ DB x=Re(z);
// DB L=log(2.);
if(x<-.5) return log(F4TEN(z+1.))/Lten;
if(x> .5) return exp(F4TEN(z-1.)*Lten);
return f4ten(z+x1ten);
}
// f4ten end
int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d;
//int M=161,M1=M+1;
int M=601,M1=M+1;
int N=461,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("10.eps","w");ado(o,602,202);
fprintf(o,"301 101 translate\n 10 10 scale\n");
DO(m,M1)X[m]=-30.+.1*(m);
DO(n,200)Y[n]=-10.+.05*n;
Y[200]=-.01;
Y[201]= .01;
for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.);
for(m=-30;m<31;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}}
for(n=-10;n<11;n++){ M( -30,n)L(30,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(n,N1){y=Y[n];
for(m=295;m<305;m++)
{x=X[m]; //printf("%5.2f\n",x);
z=z_type(x,y);
// c=tetb(z);
c=F4TEN(z);
p=Re(c);q=Im(c);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
d=c;
for(k=1;k<31;k++)
{ m1=m+k*10; if(m1>M) break;
d=exp(a*d);
p=Re(d);q=Im(d);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
}
d=c;
for(k=1;k<31;k++)
{ m1=m-k*10; if(m1<0) break;
d=log(d)/a;
p=Re(d);q=Im(d);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1;q=.5;
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n");
for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n");
// y= 0; for(m=0;m<260;m+=6) {x=-2.-.1*m; M(x,y) L(x-.1,y)}
// fprintf(o,".07 W 1 .5 0 RGB S\n");
// y= 0; for(m=3;m<260;m+=6) {x=-2-.1*m; M(x,y) L(x-.1,y)}
// fprintf(o,".07 W 0 .5 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf 10.eps");
system( "open 10.pdf");
getchar(); system("killall Preview");
}
Latex generator of labels
\documentclass{amsproc}
\usepackage{graphicx}
\usepackage{rotating}
\usepackage{hyperref}
\newcommand \sx {\scalebox}
\newcommand \rme {{\rm e}} %%makes the base of natural logarithms Roman font
%\newcommand \rme {{e}} %%makes the base of natural logarithms Italics font; choose one of these
\newcommand \rmi {{\rm i}} %%imaginary unity is always roman font
\newcommand \ds {\displaystyle}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing \includegraphics
\usepackage{geometry}
\topmargin -94pt
%\topmargin -97pt
\oddsidemargin -87pt
\paperwidth 618pt
%\paperheight 216pt
\paperheight 212pt
\begin{document}
\newcommand \mapax {
\put(2,206){\sx{1.2}{$y$}}
\put(2,188){\sx{1.2}{$8$}}
\put(2,168){\sx{1.2}{$6$}}
\put(2,148){\sx{1.2}{$4$}}
\put(2,128){\sx{1.2}{$2$}}
\put(2,108){\sx{1.2}{$0$}}
\put(-6,88){\sx{1.2}{$-2$}}
\put(-6,68){\sx{1.2}{$-4$}}
\put(-6,48){\sx{1.2}{$-6$}}
\put(-6,28){\sx{1.2}{$-8$}}
\put(-1,1){\sx{1.2}{$-30$}}
\put( 49,1){\sx{1.2}{$-25$}}
\put( 99,1){\sx{1.2}{$-20$}}
\put(149,1){\sx{1.2}{$-15$}}
\put(199,1){\sx{1.2}{$-10$}}
\put(252,1){\sx{1.2}{$-5$}}
\put(309,1){\sx{1.2}{$0$}}
\put(329,1){\sx{1.2}{$2$}}
\put(349,1){\sx{1.2}{$4$}}
\put(369,1){\sx{1.2}{$6$}}
\put(389,1){\sx{1.2}{$8$}}
\put(407,1){\sx{1.2}{$10$}}
\put(457,1){\sx{1.2}{$15$}}
\put(507,1){\sx{1.2}{$20$}}
\put(557,1){\sx{1.2}{$25$}}
\put(607,1){\sx{1.2}{$x$}}
}
%\flushright{$b=\mathrm e \approx 2.71$}
%\sx{.586}
{\begin{picture}(620,212) %%%%%%%%%%%%%%%%%%%%%%
%\put(10,10){\ing{tetema}} \mapax
\put(10,10){\ing{10}} \mapax
%\multiput(110,118)(56.1,10.7){8}{\sx{1.2}{$u\!=\!0.8$}}
%\multiput(256,120)(56.1,10.7){7}{\sx{1.2}{\rot{20}$u\!=\!1$\ero}}
%\multiput(302,120)(56.1,10.2){7}{\sx{1.2}{\rot{0}$v\!=\!1$\ero}}
%\multiput(189,116)(44.7,10.5){9}{\sx{1.2}{$u\!=\!1.4$}}
\multiput(256,124)(33.2,10.7){8}{\sx{1.2}{$u\!=\!-1.2$}}
\put(25,108.4){\sx{1.4}{\bf cut}} \put(296,108.4){\sx{1.2}{$v\!=\!0$}}
\multiput(242,92)(33.2,-10.7){8}{\sx{1.2}{$v\!=\!-0.8$}}
%\multiput(193,93)(44.7,-10.5){8}{\sx{1.2}{$v\!=\!-1.4$}}
%\put(20,200){\sx{1.4}{$u+\mathrm i v \approx 0.31813150520 + 1.3372357014 \,\mathrm i$}}
%\put(30, 20){\sx{1.4}{$u+\mathrm i v \approx 0.31813150520 - 1.3372357014 \,\mathrm i$}}
\put(20,196){\sx{1.4}{$u+\mathrm i v \approx -0.11919307341+ 0.75058329393 \,\mathrm i$}}
\put(30, 20){\sx{1.4}{$u+\mathrm i v \approx -0.11919307341- 0.75058329393 \,\mathrm i$}}
\end{picture}}
\end{document}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:10, 1 December 2018 | 1,282 × 440 (266 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 2 pages use this file:
- File:Amsfig4d.jpg (file redirect)
- File:Amsfig4d.jpg (file redirect)