Difference between revisions of "Arcsuperfac.cin"
Jump to navigation
Jump to search
| Line 28: | Line 28: | ||
z_type arcsuperfac(z_type z){ if(abs(z-2.)<.12) return arcsuperfac0(z); |
z_type arcsuperfac(z_type z){ if(abs(z-2.)<.12) return arcsuperfac0(z); |
||
return arcsuperfac(afacc(z))+1.;} |
return arcsuperfac(afacc(z))+1.;} |
||
| + | ==Out of date== |
||
| + | |||
| + | Name [[arcsuperfac]] is too long. Therefore, the routine [[AuFac.cin]] that does the same is loaded. |
||
==References== |
==References== |
||
Latest revision as of 06:58, 1 December 2018
// Arcsuperfac.cin is algorithm to evaluate the inverse function for Superfac.cin. // The algorithm below evaluates the AbelFunction of Factorial. //This algorithm is used to make pictures in publication [1].
//Later, the SuperFactorial and AbelFactorial had been redefined in order to have SuperFactorial(0)=3 and AbelFactorial(3)=0.
Code
z_type arcsuperfac0(z_type z){ int n; z_type s, c, e;
DB k=0.61278745233070836381366079016859252;
DB U[19]={1., -0.798731835172434541585621072345730147,
0.69806411355936704552792746483306691, -0.6339640557572814865638000833478131,
0.5884152357911398848274232132172143, -0.5538887519936519511632593654732843,
0.526547902598592454703287733600892, -0.504191460428021561516069870422848,
0.48545298002933922263549078734881, -0.46943468090947139273094056497701,
0.4555204862393622788179080677150, -0.4432726222110411295132308010077,
0.4323708863150174727399798603985, -0.4225752531177612936293974175008,
0.413701949171132722406449918702, -0.40560764595293667778491699902,
0.39817872478532299454624349817, -0.391323 -0.384};
// z-=2.; s=U[15]*z; for(n=14;n>=0;n--){ s+=U[n]; s*=z;}
z-=2.; s=U[18]*z; for(n=17;n>=0;n--){ s+=U[n]; s*=z;}
return log(s)/k;}
z_type arcsuperfac(z_type z){ if(abs(z-2.)<.12) return arcsuperfac0(z);
return arcsuperfac(afacc(z))+1.;}
Out of date
Name arcsuperfac is too long. Therefore, the routine AuFac.cin that does the same is loaded.
References
- ↑
http://www.springerlink.com/content/qt31671237421111/fulltext.pdf?page=1 Preview
http://mizugadro.mydns.jp/PAPERS/2010superfae.pdf reprint, English version
http://mizugadro.mydns.jp/PAPERS/2010superfar.pdf reprint, Russian version
D.Kouznetsov, H.Trappmann. Superfunctions and square root of factorial. Moscow University Physics Bulletin, 2010, v.65, No.1, p.6-12. (Russian version: p.8-14)