Difference between revisions of "File:Ausinsusinmapt50.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | Range, where the Abel sin [[AuSin]] is [[inverse function]] of super sin [[SuSin]]. |
||
− | Importing image file |
||
+ | |||
+ | [[Range of validity]] of relation |
||
+ | |||
+ | $~\mathrm{SuSin}\big(\mathrm{AuSin}(z)\big)\!=\!z~$ |
||
+ | |||
+ | in the complex plane $~z\!=\!x\!+\!\mathrm i y~$. |
||
+ | |||
+ | The region of validity of the equation is shaded with the rectangular grid. |
||
+ | |||
+ | The boundary of this range follows the lines $\Im\big(\mathrm{AuSin}(z)\Big)\!=\!0~$; |
||
+ | these lines are also drawn. |
||
+ | |||
+ | ==[[C++]] generator of rectangualr grid== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include<complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | #include "arcsin.cin" |
||
+ | #include"susin.cin" |
||
+ | #include"ausin.cin" |
||
+ | |||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | printf("1.-ausin(1)=%19.17f , 1.-ausin(z_type(1.,1.e-14))=%19.17f ;1.- susun(1.)=%19.17f, 1.-susun(z_type(1.,1.e-14))=%19.17f \n", |
||
+ | 1.-Re(ausin(1.)), 1.-Re(ausin(z_type(1.,1.e-14))), 1.-Re(susin(1.)), 1.-Re(susin(z_type(1.,1.e-14))) ); |
||
+ | // getchar(); |
||
+ | |||
+ | int M=548,M1=M+1; |
||
+ | int N=421,N1=N+1; |
||
+ | DB X[M1],Y[N1]; |
||
+ | DB *g, *f, *w; // w is working array. |
||
+ | g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); |
||
+ | f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); |
||
+ | w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("ausinsusinmap1.eps","w"); ado(o,332,402); |
||
+ | fprintf(o,"1 201 translate\n 100 100 scale\n"); |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | DB e; |
||
+ | e=1.4/sinh(1.); |
||
+ | DO(m,M1) { t=(m+.5)/400.; X[m]=e*sinh(1.*t);} |
||
+ | e=1.4/sinh(1.); |
||
+ | DO(n,N1) { t=(n-210.5)/210.; Y[n]=e*sinh(1.*t);} |
||
+ | for(m=0;m<4;m+=1){M(m,-2) L(m,2) } |
||
+ | for(n=-2;n<3;n+=1){M(0,n) L(M_PI,n)} |
||
+ | fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | M(M_PI/2,-2)L(M_PI/2,2) |
||
+ | M(M_PI,-2)L(M_PI,2) |
||
+ | fprintf(o,".001 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; |
||
+ | f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019) |
||
+ | // c=arcsin(z); |
||
+ | // c=sqrt(3./z); |
||
+ | // c=susin(z); |
||
+ | c=susin(ausin(z)); |
||
+ | // d=susin(c); |
||
+ | // d=arcsin(su0(z+1.)); |
||
+ | // p=abs(z-d)/(abs(z)+abs(d)); p=-log(p)/log(10.); if(p>0 && p<17) g[m*N1+n]=p; |
||
+ | p=Re(c); q=Im(c); if(p>-101 && p<101 && q>-101 && q<101 && abs(c-z)<.01){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | }} |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | p=200.;q=1.; |
||
+ | /* |
||
+ | p=9;q=.16; |
||
+ | conto(o,g,w,v,X,Y,M,N,(15.6 ),-p,p); fprintf(o,".001 W .4 1 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(15. ),-p,p); fprintf(o,".005 W 1 0 1 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(14. ),-p,p); fprintf(o,".002 W .2 .2 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(13. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(12. ),-p,p); fprintf(o,".006 W 0 0 1 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(11. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(10. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (9. ),-p,p); fprintf(o,".006 W 0 1 1 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (8. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (7. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (6. ),-p,p); fprintf(o,".006 W 0 .5 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (5. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (4. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (3. ),-p,p); fprintf(o,".006 W 1 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (2. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (1. ),-p,p); fprintf(o,".004 W .5 0 0 RGB S\n"); |
||
+ | */ |
||
+ | for(m=-4;m<4;m++)for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".006 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".006 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".006 W 0 0 .9 RGB S\n"); |
||
+ | for(m= 1;m<8;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".009 W .8 0 0 RGB S\n"); |
||
+ | for(m= 1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".009 W 0 0 .8 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".009 W .5 0 .5 RGB S\n"); |
||
+ | for(m=-8;m<9;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".009 W 0 0 0 RGB S\n"); |
||
+ | /* |
||
+ | fprintf(o,"0 setlinejoin 0 setlinecap\n"); |
||
+ | M(-10,0)L(0,0) fprintf(o,"1 1 1 RGB .01 W S\n"); |
||
+ | DO(n,51) {x=-.2*n; M(x-.01,0) L(x-.09,0) } fprintf(o,"0 0 0 RGB .03 W S\n"); |
||
+ | //#include "plofu.cin" |
||
+ | */ |
||
+ | |||
+ | fprintf(o,"showpage\n"); |
||
+ | fprintf(o,"%c%cTrailer\n",'%','%'); |
||
+ | fclose(o); free(f); free(g); free(w); |
||
+ | system("epstopdf ausinsusinmap1.eps"); |
||
+ | system( "open ausinsusinmap1.pdf"); //for macintosh |
||
+ | getchar(); system("killall Preview"); // For macintosh |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[C++]] generator of boundaries== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | |||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include<complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | #include "arcsin.cin" |
||
+ | #include"susin.cin" |
||
+ | #include"ausin.cin" |
||
+ | |||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | printf("1.-ausin(1)=%19.17f , 1.-ausin(z_type(1.,1.e-14))=%19.17f ;1.- susun(1.)=%19.17f, 1.-susun(z_type(1.,1.e-14))=%19.17f \n", |
||
+ | 1.-Re(ausin(1.)), 1.-Re(ausin(z_type(1.,1.e-14))), 1.-Re(susin(1.)), 1.-Re(susin(z_type(1.,1.e-14))) ); |
||
+ | // getchar(); |
||
+ | |||
+ | int M=548,M1=M+1; |
||
+ | int N=421,N1=N+1; |
||
+ | DB X[M1],Y[N1]; |
||
+ | DB *g, *f, *w; // w is working array. |
||
+ | g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); |
||
+ | f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); |
||
+ | w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("ausinsusinmap2.eps","w"); ado(o,332,402); |
||
+ | fprintf(o,"1 201 translate\n 100 100 scale\n"); |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | DB e; |
||
+ | e=2./sinh(1.); |
||
+ | DO(m,M1) { t=(m+.5)/400.; X[m]=e*sinh(1.*t);} |
||
+ | e=2./sinh(1.); |
||
+ | DO(n,N1) { t=(n-210.5)/210.; Y[n]=e*sinh(1.*t);} |
||
+ | for(m=0;m<4;m+=1){M(m,-2) L(m,2) } |
||
+ | for(n=-2;n<3;n+=1){M(0,n) L(M_PI,n)} |
||
+ | fprintf(o,".0004 W 0 0 0 RGB S\n"); |
||
+ | M(M_PI/2,-2)L(M_PI/2,2) |
||
+ | M(M_PI,-2)L(M_PI,2) |
||
+ | fprintf(o,".0003 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; |
||
+ | f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x); |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019) |
||
+ | // c=arcsin(z); |
||
+ | // c=sqrt(3./z); |
||
+ | c=ausin(z); |
||
+ | // c=susin(ausin(z)); |
||
+ | // d=susin(c); |
||
+ | // d=arcsin(su0(z+1.)); |
||
+ | // p=abs(z-d)/(abs(z)+abs(d)); p=-log(p)/log(10.); if(p>0 && p<17) g[m*N1+n]=p; |
||
+ | p=Re(c); q=Im(c); if(p>-101 && p<101 && q>-101 && q<101 ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | }} |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | p=200.;q=1.; |
||
+ | /* |
||
+ | p=9;q=.16; |
||
+ | conto(o,g,w,v,X,Y,M,N,(15.6 ),-p,p); fprintf(o,".001 W .4 1 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(15. ),-p,p); fprintf(o,".005 W 1 0 1 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(14. ),-p,p); fprintf(o,".002 W .2 .2 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(13. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(12. ),-p,p); fprintf(o,".006 W 0 0 1 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(11. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N,(10. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (9. ),-p,p); fprintf(o,".006 W 0 1 1 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (8. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (7. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (6. ),-p,p); fprintf(o,".006 W 0 .5 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (5. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (4. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (3. ),-p,p); fprintf(o,".006 W 1 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (2. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n"); |
||
+ | conto(o,g,w,v,X,Y,M,N, (1. ),-p,p); fprintf(o,".004 W .5 0 0 RGB S\n"); |
||
+ | */ |
||
+ | /* |
||
+ | for(m=-4;m<4;m++)for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".0016 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".0016 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".0016 W 0 0 .9 RGB S\n"); |
||
+ | for(m= 1;m<8;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".004 W .8 0 0 RGB S\n"); |
||
+ | for(m= 1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".004 W 0 0 .8 RGB S\n"); |
||
+ | */ |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".012 W .5 0 .5 RGB S\n"); |
||
+ | /* |
||
+ | for(m=-8;m<9;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".004 W 0 0 0 RGB S\n"); |
||
+ | fprintf(o,"0 setlinejoin 0 setlinecap\n"); |
||
+ | M(-10,0)L(0,0) fprintf(o,"1 1 1 RGB .01 W S\n"); |
||
+ | DO(n,51) {x=-.2*n; M(x-.01,0) L(x-.09,0) } fprintf(o,"0 0 0 RGB .03 W S\n"); |
||
+ | //#include "plofu.cin" |
||
+ | */ |
||
+ | |||
+ | fprintf(o,"showpage\n"); |
||
+ | fprintf(o,"%c%cTrailer\n",'%','%'); |
||
+ | fclose(o); free(f); free(g); free(w); |
||
+ | system("epstopdf ausinsusinmap2.eps"); |
||
+ | system( "open ausinsusinmap2.pdf"); //for macintosh |
||
+ | getchar(); system("killall Preview"); // For macintosh |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | |||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \usepackage{graphics} |
||
+ | \usepackage{rotating} |
||
+ | \paperwidth 3288pt |
||
+ | \paperheight 4150pt |
||
+ | \topmargin -100pt |
||
+ | \oddsidemargin -72pt |
||
+ | \textwidth 3200pt |
||
+ | \textheight 4200pt |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \pagestyle{empty} |
||
+ | \begin{document} |
||
+ | \sx{10}{\begin{picture}(328,412) |
||
+ | \put(10,9){\includegraphics{ausinsusinmap1}} |
||
+ | \put(10,9){\includegraphics{ausinsusinmap2}} |
||
+ | \put(2,406){\sx{1.2}{$y$}} |
||
+ | \put(2,306){\sx{1.2}{$1$}} |
||
+ | \put(2,206){\sx{1.2}{$0$}} |
||
+ | \put(-7,106){\sx{1.2}{$-1$}} |
||
+ | %\put(-7, 06){\sx{1.2}{$-2$}} |
||
+ | \put(9,-1){\sx{1.2}{$0$}} |
||
+ | \put(109,-1){\sx{1.2}{$1$}} |
||
+ | \put(157,-1){\sx{1.2}{$\pi/2$}} |
||
+ | \put(209,-1){\sx{1.2}{$2$}} |
||
+ | \put(309,-1){\sx{1.2}{$3$}} |
||
+ | \put(319,-1){\sx{1.2}{$x$}} |
||
+ | \end{picture}} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | |||
+ | [[Category:AuSin]] |
||
+ | [[Category:Book]] |
||
+ | [[Category:BookMap]] |
||
+ | [[Category:SuSin]] |
||
+ | [[Category:Inverse function]] |
||
+ | [[Category:Complex map]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Book]] |
Latest revision as of 08:30, 1 December 2018
Range, where the Abel sin AuSin is inverse function of super sin SuSin.
Range of validity of relation
$~\mathrm{SuSin}\big(\mathrm{AuSin}(z)\big)\!=\!z~$
in the complex plane $~z\!=\!x\!+\!\mathrm i y~$.
The region of validity of the equation is shaded with the rectangular grid.
The boundary of this range follows the lines $\Im\big(\mathrm{AuSin}(z)\Big)\!=\!0~$; these lines are also drawn.
C++ generator of rectangualr grid
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "arcsin.cin"
#include"susin.cin"
#include"ausin.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
printf("1.-ausin(1)=%19.17f , 1.-ausin(z_type(1.,1.e-14))=%19.17f ;1.- susun(1.)=%19.17f, 1.-susun(z_type(1.,1.e-14))=%19.17f \n",
1.-Re(ausin(1.)), 1.-Re(ausin(z_type(1.,1.e-14))), 1.-Re(susin(1.)), 1.-Re(susin(z_type(1.,1.e-14))) );
// getchar();
int M=548,M1=M+1;
int N=421,N1=N+1;
DB X[M1],Y[N1];
DB *g, *f, *w; // w is working array.
g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
char v[M1*N1]; // v is working array
FILE *o;o=fopen("ausinsusinmap1.eps","w"); ado(o,332,402);
fprintf(o,"1 201 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
DB e;
e=1.4/sinh(1.);
DO(m,M1) { t=(m+.5)/400.; X[m]=e*sinh(1.*t);}
e=1.4/sinh(1.);
DO(n,N1) { t=(n-210.5)/210.; Y[n]=e*sinh(1.*t);}
for(m=0;m<4;m+=1){M(m,-2) L(m,2) }
for(n=-2;n<3;n+=1){M(0,n) L(M_PI,n)}
fprintf(o,".002 W 0 0 0 RGB S\n");
M(M_PI/2,-2)L(M_PI/2,2)
M(M_PI,-2)L(M_PI,2)
fprintf(o,".001 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019)
// c=arcsin(z);
// c=sqrt(3./z);
// c=susin(z);
c=susin(ausin(z));
// d=susin(c);
// d=arcsin(su0(z+1.));
// p=abs(z-d)/(abs(z)+abs(d)); p=-log(p)/log(10.); if(p>0 && p<17) g[m*N1+n]=p;
p=Re(c); q=Im(c); if(p>-101 && p<101 && q>-101 && q<101 && abs(c-z)<.01){ g[m*N1+n]=p;f[m*N1+n]=q;}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
p=200.;q=1.;
/*
p=9;q=.16;
conto(o,g,w,v,X,Y,M,N,(15.6 ),-p,p); fprintf(o,".001 W .4 1 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(15. ),-p,p); fprintf(o,".005 W 1 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(14. ),-p,p); fprintf(o,".002 W .2 .2 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(13. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(12. ),-p,p); fprintf(o,".006 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(11. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(10. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (9. ),-p,p); fprintf(o,".006 W 0 1 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (8. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (7. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (6. ),-p,p); fprintf(o,".006 W 0 .5 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (5. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (4. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (3. ),-p,p); fprintf(o,".006 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (2. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (1. ),-p,p); fprintf(o,".004 W .5 0 0 RGB S\n");
*/
for(m=-4;m<4;m++)for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".006 W 0 .6 0 RGB S\n");
for(m=0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".006 W .9 0 0 RGB S\n");
for(m=0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".006 W 0 0 .9 RGB S\n");
for(m= 1;m<8;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".009 W .8 0 0 RGB S\n");
for(m= 1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".009 W 0 0 .8 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".009 W .5 0 .5 RGB S\n");
for(m=-8;m<9;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".009 W 0 0 0 RGB S\n");
/*
fprintf(o,"0 setlinejoin 0 setlinecap\n");
M(-10,0)L(0,0) fprintf(o,"1 1 1 RGB .01 W S\n");
DO(n,51) {x=-.2*n; M(x-.01,0) L(x-.09,0) } fprintf(o,"0 0 0 RGB .03 W S\n");
//#include "plofu.cin"
*/
fprintf(o,"showpage\n");
fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o); free(f); free(g); free(w);
system("epstopdf ausinsusinmap1.eps");
system( "open ausinsusinmap1.pdf"); //for macintosh
getchar(); system("killall Preview"); // For macintosh
}
C++ generator of boundaries
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "arcsin.cin"
#include"susin.cin"
#include"ausin.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
printf("1.-ausin(1)=%19.17f , 1.-ausin(z_type(1.,1.e-14))=%19.17f ;1.- susun(1.)=%19.17f, 1.-susun(z_type(1.,1.e-14))=%19.17f \n",
1.-Re(ausin(1.)), 1.-Re(ausin(z_type(1.,1.e-14))), 1.-Re(susin(1.)), 1.-Re(susin(z_type(1.,1.e-14))) );
// getchar();
int M=548,M1=M+1;
int N=421,N1=N+1;
DB X[M1],Y[N1];
DB *g, *f, *w; // w is working array.
g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB)));
char v[M1*N1]; // v is working array
FILE *o;o=fopen("ausinsusinmap2.eps","w"); ado(o,332,402);
fprintf(o,"1 201 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
DB e;
e=2./sinh(1.);
DO(m,M1) { t=(m+.5)/400.; X[m]=e*sinh(1.*t);}
e=2./sinh(1.);
DO(n,N1) { t=(n-210.5)/210.; Y[n]=e*sinh(1.*t);}
for(m=0;m<4;m+=1){M(m,-2) L(m,2) }
for(n=-2;n<3;n+=1){M(0,n) L(M_PI,n)}
fprintf(o,".0004 W 0 0 0 RGB S\n");
M(M_PI/2,-2)L(M_PI/2,2)
M(M_PI,-2)L(M_PI,2)
fprintf(o,".0003 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019)
// c=arcsin(z);
// c=sqrt(3./z);
c=ausin(z);
// c=susin(ausin(z));
// d=susin(c);
// d=arcsin(su0(z+1.));
// p=abs(z-d)/(abs(z)+abs(d)); p=-log(p)/log(10.); if(p>0 && p<17) g[m*N1+n]=p;
p=Re(c); q=Im(c); if(p>-101 && p<101 && q>-101 && q<101 ){ g[m*N1+n]=p;f[m*N1+n]=q;}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n");
p=200.;q=1.;
/*
p=9;q=.16;
conto(o,g,w,v,X,Y,M,N,(15.6 ),-p,p); fprintf(o,".001 W .4 1 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(15. ),-p,p); fprintf(o,".005 W 1 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(14. ),-p,p); fprintf(o,".002 W .2 .2 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(13. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(12. ),-p,p); fprintf(o,".006 W 0 0 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(11. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N,(10. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (9. ),-p,p); fprintf(o,".006 W 0 1 1 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (8. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (7. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (6. ),-p,p); fprintf(o,".006 W 0 .5 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (5. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (4. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (3. ),-p,p); fprintf(o,".006 W 1 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (2. ),-p,p); fprintf(o,".002 W 0 0 0 RGB S\n");
conto(o,g,w,v,X,Y,M,N, (1. ),-p,p); fprintf(o,".004 W .5 0 0 RGB S\n");
*/
/*
for(m=-4;m<4;m++)for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".0016 W 0 .6 0 RGB S\n");
for(m=0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".0016 W .9 0 0 RGB S\n");
for(m=0;m<4;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".0016 W 0 0 .9 RGB S\n");
for(m= 1;m<8;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".004 W .8 0 0 RGB S\n");
for(m= 1;m<9;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".004 W 0 0 .8 RGB S\n");
*/
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".012 W .5 0 .5 RGB S\n");
/*
for(m=-8;m<9;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".004 W 0 0 0 RGB S\n");
fprintf(o,"0 setlinejoin 0 setlinecap\n");
M(-10,0)L(0,0) fprintf(o,"1 1 1 RGB .01 W S\n");
DO(n,51) {x=-.2*n; M(x-.01,0) L(x-.09,0) } fprintf(o,"0 0 0 RGB .03 W S\n");
//#include "plofu.cin"
*/
fprintf(o,"showpage\n");
fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o); free(f); free(g); free(w);
system("epstopdf ausinsusinmap2.eps");
system( "open ausinsusinmap2.pdf"); //for macintosh
getchar(); system("killall Preview"); // For macintosh
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 3288pt
\paperheight 4150pt
\topmargin -100pt
\oddsidemargin -72pt
\textwidth 3200pt
\textheight 4200pt
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\pagestyle{empty}
\begin{document}
\sx{10}{\begin{picture}(328,412)
\put(10,9){\includegraphics{ausinsusinmap1}}
\put(10,9){\includegraphics{ausinsusinmap2}}
\put(2,406){\sx{1.2}{$y$}}
\put(2,306){\sx{1.2}{$1$}}
\put(2,206){\sx{1.2}{$0$}}
\put(-7,106){\sx{1.2}{$-1$}}
%\put(-7, 06){\sx{1.2}{$-2$}}
\put(9,-1){\sx{1.2}{$0$}}
\put(109,-1){\sx{1.2}{$1$}}
\put(157,-1){\sx{1.2}{$\pi/2$}}
\put(209,-1){\sx{1.2}{$2$}}
\put(309,-1){\sx{1.2}{$3$}}
\put(319,-1){\sx{1.2}{$x$}}
\end{picture}}
\end{document}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:10, 1 December 2018 | 2,274 × 2,871 (1,015 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: