Difference between revisions of "File:KellerPlotT.png"
(book) |
|||
Line 96: | Line 96: | ||
Copyleft 2012 by Dmitrii Kouznetsov. |
Copyleft 2012 by Dmitrii Kouznetsov. |
||
The image and the generators above may be used for free; attribute the source. |
The image and the generators above may be used for free; attribute the source. |
||
− | == |
+ | ==References== |
<references/> |
<references/> |
||
[[Category:Book]] |
[[Category:Book]] |
||
+ | [[Category:BookPlot]] |
||
[[Category:Keller function]] |
[[Category:Keller function]] |
||
[[Category:Transfer function]] |
[[Category:Transfer function]] |
Latest revision as of 08:39, 1 December 2018
Explicit plot of various iterations $t$ the Keller function
- $ y=\mathrm{Keller}^t(x)=\mathrm{Shoka}\Big( t + \mathrm{ArcShoka}(x)\Big)$
To plot this graphic, the iterations of the Keller function are implemented through the Shoka function and the ArcShoka function.
C++ generator of curves]]
// File ado.cin shold be loaded to the working directory in order to compile the C++ code below.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.)
#include"ado.cin"
z_type Shoka(z_type z) { return z + log(exp(-z)+(M_E-1.)); } z_type ArcShoka(z_type z){ return z + log((1.-exp(-z))/(M_E-1.)) ;}
#define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); main(){ int j,k,m,n; DB x,y, a; FILE *o;o=fopen("KellerPlot.eps","w");ado(o,408,412); fprintf(o,"4 4 translate\n 100 100 scale 2 setlinecap 1 setlinejoin\n"); for(m=0;m<5;m++){ M(m,0)L(m,4)} for(n=0;n<5;n++){ M(0,n)L(4,n)} M(0,0)L(4,4) fprintf(o,".01 W 0 0 0 RGB S\n"); DO(n,134){x=.005+.01*n;y=Re(Shoka(3.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n"); DO(n,216){x=.005+.01*n;y=Re(Shoka(2.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n"); DO(n,154){x=.005+.02*n;y=Re(Shoka(1.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W 0 0 .5 RGB S\n"); DO(n,101){x=.005+.04*n;y=Re(Shoka(-1.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n"); DO(n,101){x=.005+.04*n;y=Re(Shoka(-2.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n"); DO(n,101){x=.005+.04*n;y=Re(Shoka(-3.+ArcShoka(x)));if(n==0)M(x,y)else L(x,y)} fprintf(o,".02 W .5 0 0 RGB S\n"); fprintf(o,"showpage\n%cTrailer",'%'); fclose(o); system("epstopdf KellerPlot.eps"); system( "open KellerPlot.pdf"); //these 2 commands may be specific for macintosh getchar(); system("killall Preview");// if run at another operational sysetm, may need to modify }
Latex generator of labels
% File KellerPlot.pdf should be generated with the code above in order to compile the Latex document below.
%
\documentclass[12pt]{article} %<br>
\usepackage{geometry} %<br>
\usepackage{graphicx} %<br>
\usepackage{rotating} %<br>
\paperwidth 419pt %<br>
\paperheight 426pt %<br>
\topmargin -103pt %<br>
\oddsidemargin -83pt %<br>
\textwidth 1200pt %<br>
\textheight 600pt %<br>
\pagestyle {empty} %<br>
\newcommand \sx {\scalebox} %<br>
\newcommand \rot {\begin{rotate}} %<br>
\newcommand \ero {\end{rotate}} %<br>
\newcommand \ing {\includegraphics} %<br>
\begin{document} %<br>
\sx{1}{ \begin{picture}(810,410) %<br>
\put(1,9){\ing{KellerPlot}} % <br>
\put(-12,401){\sx{2.8}{$y$}} % <br>
\put(-12,303){\sx{2.8}{$3$}} % <br>
\put(-12,203){\sx{2.8}{$2$}} % <br>
\put(-12,103){\sx{2.8}{$1$}} % <br>
\put(0,-9){\sx{2.5}{$0$}} % <br>
\put(100,-9){\sx{2.5}{$1$}} % <br>
\put(200,-9){\sx{2.5}{$2$}} % <br>
\put(300,-9){\sx{2.5}{$3$}} % <br>
\put(392,-7){\sx{2.6}{$x$}} % <br>
%\put(560,214){\rot{37}\sx{4}{$y=\mathrm{Tania}(x)$}\ero} % <br>
\put( 88,354){\rot{53}\sx{2.8}{$t\!=\!3$}\ero} %<br>
\put(160,354){\rot{50}\sx{2.8}{$t\!=\!2$}\ero} %<br>
\put(246,354){\rot{48}\sx{2.8}{$t\!=\!1$}\ero} %<br>
\put(336,350){\rot{45}\sx{2.8}{$t\!=\!0$}\ero} %<br>
\put(340,218){\rot{44}\sx{2.8}{$t\!=\!-1$}\ero} %<br>
\put(344,136){\rot{41}\sx{2.7}{$t\!=\!-2$}\ero} %<br>
\put(338, 68){\rot{34}\sx{2.7}{$t\!=\!-3$}\ero} %<br>
\end{picture} %<br>
} %<br>
\end{document}
%
Copyleft status
Copyleft 2012 by Dmitrii Kouznetsov. The image and the generators above may be used for free; attribute the source.
References
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 870 × 885 (118 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: