Difference between revisions of "File:TetSheldonImaT.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | Few iterations at the [[Iterated Cauchi]] for the [[Tetration to Sheldon base]]. |
||
− | Importing image file |
||
+ | |||
+ | The holomorphic solution $F$ of equation |
||
+ | : $ \!\!\!\!\!\!\!\! (1) ~ ~ ~ |
||
+ | \exp(a F(z))=F(z\!+\! 1)$ |
||
+ | is considered for |
||
+ | : $\!\!\!\!\!\! (2) ~ ~ ~ |
||
+ | a=\ln(s) = \ln( 1.52598338517+0.0178411853321 i) \approx |
||
+ | 0.4227073870410604+0.0116910660021443 i |
||
+ | $ |
||
+ | where $s$ is the [[Sheldon number]]. |
||
+ | |||
+ | The solution $F$ is supposed to have the specific boundary behavior: |
||
+ | : $\!\!\!\!\!\! (3) ~ ~ ~ |
||
+ | F(x+ i \infty) = Z_{\mathrm o}=\mathrm{Filog}(a)$ |
||
+ | : $\!\!\!\!\!\! (4) ~ ~ ~ |
||
+ | F(x- i \infty) = Z_{\mathrm c}=\mathrm{Filog}(a^*)^*$ |
||
+ | where [[Filog]] is [[fixed point]] of the [[logarithm]]. |
||
+ | ==Approximation== |
||
+ | The solution is approximated first along the imaginary axis, |
||
+ | : $\!\!\!\!\!\! (5) ~ ~ ~ F(iy)=f(x)$ |
||
+ | where $f$ is solution of equation |
||
+ | : $\!\!\!\!\!\! (5) ~ ~ ~ \displaystyle |
||
+ | f(x) = K(ix) |
||
+ | + \frac{1}{2\pi} \int_{-A}^{A} \frac{ \exp(a f(y) ) }{ 1+ \mathrm i y- \mathrm i x} \mathrm d y |
||
+ | + \frac{1}{2\pi} \int_{-A}^{A} \frac{ \log(f(y))/a }{-1+\mathrm i y- \mathrm i x} \mathrm d y |
||
+ | $ |
||
+ | with |
||
+ | : $\!\!\!\!\!\! (6) ~ ~ ~ \displaystyle |
||
+ | K(z)= |
||
+ | Z_{\mathrm o} \left(\frac 12-\frac{1}{2\pi\mathrm i} \ln \frac {1-\mathrm i A +z} {1+\mathrm i A-z} \right) + \displaystyle |
||
+ | Z_{\mathrm c} \left( \frac 12-\frac{1}{2\pi\mathrm i} \ln \frac {1-\mathrm i A -z} {1+\mathrm i A+z} \right) $ |
||
+ | |||
+ | where $A$ is large positive constant. |
||
+ | |||
+ | The [[Gauss-Legendre quadrature]] formula |
||
+ | <ref name="czlg"> |
||
+ | http://en.citizendium.org/wiki/Legendre-Gauss_Quadrature_formula |
||
+ | </ref> |
||
+ | is used for the numerical implementation of the integration with number of nodes 2048. |
||
+ | The update by (5) is realized node by node; first even nodes from left to right; then odd ones from right to left. |
||
+ | The details can be revealed from the algorithm below. |
||
+ | |||
+ | ==Generators of the figure== |
||
+ | The follpwing files should be loaded to the working directory for the compilation of the generator below: |
||
+ | [[ado.cin]] (header for graphics)<br> |
||
+ | [[filog.cin]] (evaluation of [[Filog]])<br> |
||
+ | [[GLxw2048.inc]] (nodes and weights of the [[Gauss-Kegendre quadrature]] formula |
||
+ | ===C++ generator of curves=== |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) (x).real() |
||
+ | #define Im(x) (x).imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #include "ado.cin" |
||
+ | #include "filog.cin" |
||
+ | #define M(x,y) fprintf(o,"%5.3f %5.3f M\n",1.*(x),1.*(y)); |
||
+ | #define L(x,y) fprintf(o,"%5.3f %5.3f L\n",1.*(x),1.*(y)); |
||
+ | #define o(x,y) fprintf(o,"%5.3f %5.3f o\n",1.*(x),1.*(y)); |
||
+ | main(){ int J,j,k,m,n; DB x,y, u, t; z_type z,c,d, cu,cd; |
||
+ | #include "GLxw2048.inc" |
||
+ | z_type b=z_type( 1.5259833851700000, 0.0178411853321000); |
||
+ | z_type a=log(b); |
||
+ | z_type Zo=Filog(a); |
||
+ | z_type Zc=conj(Filog(conj(a))); |
||
+ | int K=NPO; DB A=32.; printf("K=%3d A=%3.1f\n",K,A); |
||
+ | z_type E[K],F[K],G[K],H[K]; |
||
+ | FILE *o;o=fopen("TetSheldonIma.eps","w");ado(o,2200,450); |
||
+ | fprintf(o,"1100 201 translate\n 100 100 scale\n"); |
||
+ | for(j=-10;j<11;j+=1){M(j,-2)L(j,2);} |
||
+ | M(-10 , 2)L(10 , 2); |
||
+ | M(-10 , 1)L(10 , 1); |
||
+ | M(-10 ,-1)L(10 ,-1); |
||
+ | M(-10 ,-2)L(10 ,-2); |
||
+ | fprintf(o,".006 W S\n"); |
||
+ | M(-10.1,0)L(10.1,0); fprintf(o,".02 W S\n"); |
||
+ | fprintf(o,".01 W S\n 1 setlinejoin 1\n"); |
||
+ | DO(n,K){y=GLx[n]*A; |
||
+ | if(y<-2.4) E[n]=F[n]=G[n]=Zc; |
||
+ | else {if(y>2.4) E[n]=F[n]=G[n]=Zo; |
||
+ | else { F[n]=c=1. ;//f3(z_type(0.,y)); |
||
+ | E[n]=log(c)/a; |
||
+ | G[n]=exp(a*c); |
||
+ | } |
||
+ | } |
||
+ | } |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".08 W 1 .2 1 RGB S\n"); |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".08 W 1 .6 1 RGB S\n"); |
||
+ | for(n=0;n<K;n+=2) |
||
+ | { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);} |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".01 W 1 0 0 RGB S\n"); |
||
+ | for(n=K-1;n>0;n-=2) |
||
+ | {y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); } |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".02 W 0 1 0 RGB S\n"); |
||
+ | for(n=0;n<K;n+=2) |
||
+ | {y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); } |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".01 W 0 0 1 RGB S\n"); |
||
+ | for(n=K-1;n>0;n-=2) |
||
+ | {y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);} |
||
+ | DO(j,4) |
||
+ | { |
||
+ | for(n=0;n<K;n+=2) |
||
+ | { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); } |
||
+ | for(n=K-1;n>0;n-=2) |
||
+ | { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);} |
||
+ | } |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | fprintf(o,"showpage\n\%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf TetSheldonIma.eps"); |
||
+ | system( "open TetSheldonIma.pdf"); |
||
+ | o=fopen("TetSheldonIma.inc","w"); |
||
+ | fprintf(o,"z_type F[K]={\n"); |
||
+ | DO(k,K-1) fprintf(o,"z_type(%19.16lf,%19.16lf),\n",Re(F[k]),Im(F[k])); |
||
+ | fprintf(o,"z_type(%19.16lf,%19.16lf)};\n",Re(F[K-1]),Im(F[K-1])); |
||
+ | fclose(o); |
||
+ | } |
||
+ | ===Latex generator of lables=== |
||
+ | <nowiki> |
||
+ | \documentclass[12pt]{article} %<br> |
||
+ | \paperwidth 2100pt %<br> |
||
+ | \paperheight 472pt %<br> |
||
+ | \textwidth 2060pt %<br> |
||
+ | \textheight 500pt %<br> |
||
+ | \topmargin -100pt %<br> |
||
+ | \oddsidemargin -104pt %<br> |
||
+ | \pagestyle{empty} %<br> |
||
+ | \usepackage[usenames]{color} %<br> |
||
+ | \usepackage[utf8x]{inputenc} %<br> |
||
+ | \usepackage{hyperref} %<br> |
||
+ | \usepackage{graphicx} %<br> |
||
+ | \usepackage{rotating} %<br> |
||
+ | \newcommand \sx {\scalebox} %<br> |
||
+ | \newcommand \ing {\includegraphics} %<br> |
||
+ | \newcommand \rme {\mathrm{e}} %<br> |
||
+ | \newcommand \rot {\begin{rotate}} %<br> |
||
+ | \newcommand \ero {\end{rotate}} %<br> |
||
+ | \begin{document} %<br> |
||
+ | \parindent 0pt %<br> |
||
+ | \begin{picture}(2090,432) %<br> |
||
+ | \put(-10,10){\ing{TetSheldonIma}} %<br> |
||
+ | \put(50,392){\sx{5}{$2$}} %<br> |
||
+ | \put(50,293){\sx{5}{$1$}} %<br> |
||
+ | \put(50,194){\sx{5}{$0$}} %<br> |
||
+ | \put(23,94){\sx{5}{$-\!1$}} %<br> |
||
+ | \put(23,-6){\sx{5}{$-\!2$}} %<br> |
||
+ | \put(250,-28){\sx{4.5}{$-8$}} %<br> |
||
+ | \put(450,-28){\sx{4.5}{$-6$}} %<br> |
||
+ | \put(650,-28){\sx{4.5}{$-4$}} %<br> |
||
+ | \put(850,-28){\sx{4.5}{$-2$}} %<br> |
||
+ | \put(1084,-28){\sx{4.5}{$0$}} %<br> |
||
+ | \put(1284,-28){\sx{4.5}{$2$}} %<br> |
||
+ | \put(1484,-28){\sx{4.5}{$4$}} %<br> |
||
+ | \put(1684,-28){\sx{4.5}{$6$}} %<br> |
||
+ | \put(1884,-28){\sx{4.5}{$8$}} %<br> |
||
+ | \put(2084,-28){\sx{4.5}{$x$}} %<br> |
||
+ | \put(220,394){\sx{4.2}{$\Im\big(f(x)\big)$}} %<br> |
||
+ | \put(220,32){\sx{4.2}{$\Re\big(f(x)\big)$}} %<br> |
||
+ | \put(1800,377){\sx{4.2}{$\Im\big(f(x)\big)$}} %<br> |
||
+ | \put(1800,290){\sx{4.2}{$\Re\big(f(x)\big)$}} %<br> |
||
+ | \end{picture} %<br> |
||
+ | \end{document} |
||
+ | </nowiki> |
||
+ | |||
+ | |||
+ | <!-- |
||
+ | ==Description of the figure== |
||
+ | |||
+ | $A$. |
||
+ | |||
+ | In the figure, the case $A=32$ is presented; the 0th iteration is shown with thick lines, $\Re(f(x))$ and $\Im(f(x))$ are drawn$. |
||
+ | |||
+ | The equation (2) is interpreted as assignment. At the parallel assignment, the iteration diverge. |
||
+ | |||
+ | Function $f$ should represented at some mesh, and the values should be updated one by one. |
||
+ | |||
+ | The fast convergence can be achieved at the appropriate order of updates. Few iterations of funciton $f$ are shown with thin lines. The 9th iteration is shown with thin pback line, and visually it is not distinguishable from the solution of equation (5). |
||
+ | |||
+ | !--> |
||
+ | |||
+ | ==Related pictures== |
||
+ | |||
+ | The same algorithm is used for the evaluation of [[tetration]] to the natural base ($b\!=\!\mathrm e$) |
||
+ | <ref name="mcom1"> |
||
+ | http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html D.Kouznetsov. (2009). Solutions of F(z+1)=exp(F(z)) in the complex plane.. Mathematics of Computation, 78: 1647-1670 |
||
+ | </ref>. |
||
+ | |||
+ | ==Keywords== |
||
+ | [[Tetration]], |
||
+ | [[Tetration to Sheldon base]]. |
||
+ | [[Filog]], |
||
+ | [[Superfunction]] |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | [[Category:Explicit plots]] |
||
+ | [[Category:Tetration]] |
||
+ | [[Category:Superfunction]] |
||
+ | [[Category:Cauchi]] |
||
+ | [[Category:Sheldon Levenstein]] |
Latest revision as of 09:40, 21 June 2013
Few iterations at the Iterated Cauchi for the Tetration to Sheldon base.
The holomorphic solution $F$ of equation
- $ \!\!\!\!\!\!\!\! (1) ~ ~ ~
\exp(a F(z))=F(z\!+\! 1)$ is considered for
- $\!\!\!\!\!\! (2) ~ ~ ~
a=\ln(s) = \ln( 1.52598338517+0.0178411853321 i) \approx 0.4227073870410604+0.0116910660021443 i $ where $s$ is the Sheldon number.
The solution $F$ is supposed to have the specific boundary behavior:
- $\!\!\!\!\!\! (3) ~ ~ ~
F(x+ i \infty) = Z_{\mathrm o}=\mathrm{Filog}(a)$
- $\!\!\!\!\!\! (4) ~ ~ ~
F(x- i \infty) = Z_{\mathrm c}=\mathrm{Filog}(a^*)^*$ where Filog is fixed point of the logarithm.
Approximation
The solution is approximated first along the imaginary axis,
- $\!\!\!\!\!\! (5) ~ ~ ~ F(iy)=f(x)$
where $f$ is solution of equation
- $\!\!\!\!\!\! (5) ~ ~ ~ \displaystyle
f(x) = K(ix) + \frac{1}{2\pi} \int_{-A}^{A} \frac{ \exp(a f(y) ) }{ 1+ \mathrm i y- \mathrm i x} \mathrm d y + \frac{1}{2\pi} \int_{-A}^{A} \frac{ \log(f(y))/a }{-1+\mathrm i y- \mathrm i x} \mathrm d y $ with
- $\!\!\!\!\!\! (6) ~ ~ ~ \displaystyle
K(z)= Z_{\mathrm o} \left(\frac 12-\frac{1}{2\pi\mathrm i} \ln \frac {1-\mathrm i A +z} {1+\mathrm i A-z} \right) + \displaystyle Z_{\mathrm c} \left( \frac 12-\frac{1}{2\pi\mathrm i} \ln \frac {1-\mathrm i A -z} {1+\mathrm i A+z} \right) $
where $A$ is large positive constant.
The Gauss-Legendre quadrature formula [1] is used for the numerical implementation of the integration with number of nodes 2048. The update by (5) is realized node by node; first even nodes from left to right; then odd ones from right to left. The details can be revealed from the algorithm below.
Generators of the figure
The follpwing files should be loaded to the working directory for the compilation of the generator below:
ado.cin (header for graphics)
filog.cin (evaluation of Filog)
GLxw2048.inc (nodes and weights of the Gauss-Kegendre quadrature formula
C++ generator of curves
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) (x).real() #define Im(x) (x).imag() #define I z_type(0.,1.) #define DO(x,y) for(x=0;x<y;x++) #include "ado.cin" #include "filog.cin" #define M(x,y) fprintf(o,"%5.3f %5.3f M\n",1.*(x),1.*(y)); #define L(x,y) fprintf(o,"%5.3f %5.3f L\n",1.*(x),1.*(y)); #define o(x,y) fprintf(o,"%5.3f %5.3f o\n",1.*(x),1.*(y)); main(){ int J,j,k,m,n; DB x,y, u, t; z_type z,c,d, cu,cd; #include "GLxw2048.inc" z_type b=z_type( 1.5259833851700000, 0.0178411853321000); z_type a=log(b); z_type Zo=Filog(a); z_type Zc=conj(Filog(conj(a))); int K=NPO; DB A=32.; printf("K=%3d A=%3.1f\n",K,A); z_type E[K],F[K],G[K],H[K]; FILE *o;o=fopen("TetSheldonIma.eps","w");ado(o,2200,450); fprintf(o,"1100 201 translate\n 100 100 scale\n"); for(j=-10;j<11;j+=1){M(j,-2)L(j,2);} M(-10 , 2)L(10 , 2); M(-10 , 1)L(10 , 1); M(-10 ,-1)L(10 ,-1); M(-10 ,-2)L(10 ,-2); fprintf(o,".006 W S\n"); M(-10.1,0)L(10.1,0); fprintf(o,".02 W S\n"); fprintf(o,".01 W S\n 1 setlinejoin 1\n"); DO(n,K){y=GLx[n]*A; if(y<-2.4) E[n]=F[n]=G[n]=Zc; else {if(y>2.4) E[n]=F[n]=G[n]=Zo; else { F[n]=c=1. ;//f3(z_type(0.,y)); E[n]=log(c)/a; G[n]=exp(a*c); } } } DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} fprintf(o,".08 W 1 .2 1 RGB S\n"); DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} fprintf(o,".08 W 1 .6 1 RGB S\n"); for(n=0;n<K;n+=2) { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);} DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} fprintf(o,".01 W 1 0 0 RGB S\n"); for(n=K-1;n>0;n-=2) {y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); } DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} fprintf(o,".02 W 0 1 0 RGB S\n"); for(n=0;n<K;n+=2) {y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); } DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} fprintf(o,".01 W 0 0 1 RGB S\n"); for(n=K-1;n>0;n-=2) {y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);} DO(j,4) { for(n=0;n<K;n+=2) { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); } for(n=K-1;n>0;n-=2) { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);} } DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} fprintf(o,".01 W 0 0 0 RGB S\n"); fprintf(o,"showpage\n\%c%cTrailer",'%','%'); fclose(o); system("epstopdf TetSheldonIma.eps"); system( "open TetSheldonIma.pdf"); o=fopen("TetSheldonIma.inc","w"); fprintf(o,"z_type F[K]={\n"); DO(k,K-1) fprintf(o,"z_type(%19.16lf,%19.16lf),\n",Re(F[k]),Im(F[k])); fprintf(o,"z_type(%19.16lf,%19.16lf)};\n",Re(F[K-1]),Im(F[K-1])); fclose(o); }
Latex generator of lables
\documentclass[12pt]{article} %<br> \paperwidth 2100pt %<br> \paperheight 472pt %<br> \textwidth 2060pt %<br> \textheight 500pt %<br> \topmargin -100pt %<br> \oddsidemargin -104pt %<br> \pagestyle{empty} %<br> \usepackage[usenames]{color} %<br> \usepackage[utf8x]{inputenc} %<br> \usepackage{hyperref} %<br> \usepackage{graphicx} %<br> \usepackage{rotating} %<br> \newcommand \sx {\scalebox} %<br> \newcommand \ing {\includegraphics} %<br> \newcommand \rme {\mathrm{e}} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \begin{document} %<br> \parindent 0pt %<br> \begin{picture}(2090,432) %<br> \put(-10,10){\ing{TetSheldonIma}} %<br> \put(50,392){\sx{5}{$2$}} %<br> \put(50,293){\sx{5}{$1$}} %<br> \put(50,194){\sx{5}{$0$}} %<br> \put(23,94){\sx{5}{$-\!1$}} %<br> \put(23,-6){\sx{5}{$-\!2$}} %<br> \put(250,-28){\sx{4.5}{$-8$}} %<br> \put(450,-28){\sx{4.5}{$-6$}} %<br> \put(650,-28){\sx{4.5}{$-4$}} %<br> \put(850,-28){\sx{4.5}{$-2$}} %<br> \put(1084,-28){\sx{4.5}{$0$}} %<br> \put(1284,-28){\sx{4.5}{$2$}} %<br> \put(1484,-28){\sx{4.5}{$4$}} %<br> \put(1684,-28){\sx{4.5}{$6$}} %<br> \put(1884,-28){\sx{4.5}{$8$}} %<br> \put(2084,-28){\sx{4.5}{$x$}} %<br> \put(220,394){\sx{4.2}{$\Im\big(f(x)\big)$}} %<br> \put(220,32){\sx{4.2}{$\Re\big(f(x)\big)$}} %<br> \put(1800,377){\sx{4.2}{$\Im\big(f(x)\big)$}} %<br> \put(1800,290){\sx{4.2}{$\Re\big(f(x)\big)$}} %<br> \end{picture} %<br> \end{document}
Related pictures
The same algorithm is used for the evaluation of tetration to the natural base ($b\!=\!\mathrm e$) [2].
Keywords
Tetration, Tetration to Sheldon base. Filog, Superfunction
References
- ↑ http://en.citizendium.org/wiki/Legendre-Gauss_Quadrature_formula
- ↑ http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html D.Kouznetsov. (2009). Solutions of F(z+1)=exp(F(z)) in the complex plane.. Mathematics of Computation, 78: 1647-1670
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 4,359 × 980 (598 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: