File:SuZexTay2008t12MapT.jpg
Original file (4,576 × 4,542 pixels, file size: 1.71 MB, MIME type: image/jpeg)
Complex map of the Taylor expansion $\Phi_{12}$ of function SuZex at point $x_1\!+\!12$; the constant $x_1$ is chosen in such a way that
$\lim_{n \rightarrow \infty} \mathrm{zex}^n\Phi_{12}(x_1-n)=1$.
However even at $n\!=\!0, this the reasonable approximation for $x_1$.
C++ generator of curves
// Files ado.cin. conto.cin, SuZexCoef20.cin, SuZexTay2008co.cin, SuZexTay0co.cin
//should be loaded to the working directory in order to compile the code below.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include<complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin" //#include "fsexp.cin" //#include "fslog.cin"
// SuZex.cin below is the C++ implementation of function SuZex // which is superfunction for the transfer function T(z)=zex(z)= x exp(z) // Copyleft 2012 by Dmitrii Kouznetsov; I hope, files // SuZexCoef20.cin, SuZexTay2008co.cin, SuZexTay0co.cin // are already loaded to the working directory
z_type zex(z_type z) { return z*exp(z);}
z_type suzexo(z_type z){ int n,m; z_type L=log(-z); z_type c[20]; z_type s; #include "SuZexCoef20.cin" c[0]=-1.; c[1]=.5*L; for(n=2;n<21;n++){ s=a[n][n]; for(m=n-1; m>=0; m--){ s*=L; s+=a[n][m]; } c[n]=s; } s=c[20]/z; for(n=19;n>=0;n--){ s+=c[n]; s/=z;} return s; }
z_type suzex2008t12(z_type z){ int n,m=80; z_type s; #include "SuZexTay2008co.cin" s=c[m]; for(n=m-1;n>=0;n--){ s*=z; s+=c[n];} return s;}
z_type SuZexTay0(z_type z){ int n,m=96; z_type s; #include "SuZexTay0co.cin" s=SuZexTay0co[m]; for(n=m-1;n>=0;n--){ s*=z; s+=SuZexTay0co[n];} return s;}
z_type suzex(z_type z){int m,n; z_type s; if( abs(z) < 1.6 ) return SuZexTay0(z) ; // I made the Taylor expansion for this case if( Re(z)>0 && fabs(Im(z))<1.5){n=int(Re(z)+.5); s=SuZexTay0(z-(0.+n)); DO(m,n) s=zex(s); return s;} z+=-1.1259817765745026; // WARNING! ARGUEMENT CHANGES ITS VALUE! if( abs(z+12.) < 8.1 ) return suzex2008t12(z+12.) ; // I made the Taylor expansion for this case if( Re(z)<-12. || fabs(Im(z)) > 8. ) return suzexo(z); // definitely, |z|>8 n= int(Re(z)+12.); s=suzex2008t12(z+12.-(0.+n)); DO(m,n) s=zex(s); return s; } // Copyleft 2012 by Dmitrii Kouznetsov // //
//The procedures above can be loaded also as SuZex.cin // #include "SuZex.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; //DB x1=-1.1259817765745026; DO(n,8){ y=Re(suzex(x1)); x=y-1.; x1+=-1.2*x; printf("%18.16f %18.16f\n", x1,y);} getchar(); int M=551,M1=M+1; int N=400,N1=N+1; DB X[M1],Y[N1]; DB *g, *f, *w; // w is working array. g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); char v[M1*N1]; // v is working array FILE *o;o=fopen("SuZexTay2008t12Map.eps","w"); ado(o,2202,2202); fprintf(o,"1101 1101 translate\n 100 100 scale\n"); fprintf(o,"1 setlinejoin 2 setlinecap\n"); DO(m,M1) X[m]=-11.+.04*(m-.5); //DO(n,N1) Y[n]=-11.+.04*(n-.5); for(n=0;n<N1;n++) { Y[n]=1.09*sinh((3./200.)*(n-200)); printf("%3d %9.6f\n",n,Y[n]); } for(m=-10;m<11;m++){if(m==0){M(m,-20)L(m,20)} else {M(m,-10)L(m,10)} } for(n=-10;n<11;n++) {M( -10,n)L(10,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){ g[m*N1+n]=999; f[m*N1+n]=999;} DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019) //c=suzex(z); //d=suzexTaylo(z); c=suzex2008t12(z+(12.-1.1259817765745026)); // c=suzexo(z-1.1259817765745026); // d=zex(suzex2008(z-1.)); //d =suzexo(z); //d=zex(suzexo(z-1.)); // p=abs(c-d)/(abs(c)+abs(d)); p=-log(p)/log(10.); if(p>0 && p<17) g[m*N1+n]=p; p=Re(c); q=Im(c); if(p>-19 && p<19 && ( x<2. || fabs(q)>1.e-12 && fabs(p)>1.e-12) ){ g[m*N1+n]=p;f[m*N1+n]=q;} }} fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=2.;q=.5; /* conto(o,g,w,v,X,Y,M,N, (1. ),-p,p); fprintf(o,".02 W .5 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (2. ),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (3. ),-p,p); fprintf(o,".04 W 0 1 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (4. ),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (5. ),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (6. ),-p,p); fprintf(o,".04 W 0 1 1 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (7. ),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (8. ),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N, (9. ),-p,p); fprintf(o,".04 W 0 0 1 RGB S\n"); conto(o,g,w,v,X,Y,M,N,(10. ),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N,(11. ),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N,(12. ),-p,p); fprintf(o,".04 W 1 0 1 RGB S\n"); conto(o,g,w,v,X,Y,M,N,(13. ),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N,(14. ),-p,p); fprintf(o,".02 W 0 0 0 RGB S\n"); conto(o,g,w,v,X,Y,M,N,(15. ),-3,3); fprintf(o,".04 W 0 .4 0 RGB S\n"); */ for(m=-8;m<8;m++)for(n=1;n<10;n+=1)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".007 W 0 .6 0 RGB S\n"); for(m=0;m<8;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".007 W .9 0 0 RGB S\n"); for(m=0;m<8;m++) for(n=1;n<10;n+=1)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".007 W 0 0 .9 RGB S\n"); for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".02 W .8 0 0 RGB S\n"); for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".02 W 0 0 .8 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .5 0 .5 RGB S\n"); for(m=-16;m<17;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".02 W 0 0 0 RGB S\n");
// fprintf(o,"-12 0 8 10 350 arc 1 .3 0 RGB .06 W S\n");
//#include "plofu.cin" // fprintf(o,"0 setlinejoin 0 setlinecap\n"); fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o); free(f); free(g); free(w); system("epstopdf SuZexTay2008t12Map.eps"); system( "open SuZexTay2008t12Map.pdf"); //for macintosh getchar(); system("killall Preview"); // For macintosh }
Latex generator of labels
% %<br> \documentclass[12pt]{article} % <br> \paperwidth 2196px % <br> \paperheight 2180px % <br> \textwidth 2394px % <br> \textheight 2300px % <br> \topmargin -110px % <br> \oddsidemargin -78px % <br> \usepackage{graphics} % <br> \usepackage{rotating} % <br> \newcommand \sx {\scalebox} % <br> \newcommand \rot {\begin{rotate}} % <br> \newcommand \ero {\end{rotate}} % <br> \newcommand \ing {\includegraphics} % <br> \newcommand \rmi {\mathrm{i}} % <br> \parindent 0pt \pagestyle{empty} \begin{document} % <br> \newcommand \zoomax { % <br> \put(40,2148){\sx{8}{$y$}} % <br> \put(40,1880){\sx{7}{$8$}} % <br> \put(40,1680){\sx{7}{$6$}} % <br> \put(40,1480){\sx{7}{$4$}} % <br> \put(40,1280){\sx{7}{$2$}} % <br> \put(40,1080){\sx{7}{$0$}} % <br> \put(-12,880){\sx{7}{$-2$}} % <br> \put(-12,680){\sx{7}{$-4$}} % <br> \put(-12,480){\sx{7}{$-6$}} % <br> \put(-12,280){\sx{7}{$-8$}} % <br> \put(002, 28){\sx{7}{$-\!10$}} % <br> \put(220, 28){\sx{7}{$-8$}} % <br> \put(420, 28){\sx{7}{$-6$}} % <br> \put(620, 28){\sx{7}{$-4$}} % <br> \put(820, 28){\sx{7}{$-2$}} % <br> \put(1088, 28){\sx{7}{$0$}} % <br> \put(1288, 28){\sx{7}{$2$}} % <br> \put(1488, 28){\sx{7}{$4$}} % <br> \put(1688, 28){\sx{7}{$6$}} % <br> \put(1888, 28){\sx{7}{$8$}} % <br> \put(2058, 28){\sx{7}{$10$}} % <br> \put(2166, 28){\sx{7}{$x$}} % <br> } % <br> \parindent 0pt % <br> \sx{1}{\begin{picture}(2200,2200) % <br> %\put(40,20){\ing{b271tMap3}} % <br> %\put(40,20){\ing{ExpMap}} % <br> \put(0,0){\ing{SuZexTay2008t12Map}} % <br> \zoomax % <br> \put(0648,1877){\sx{8.2}{\rot{47}$v\!=\!0.1$\ero}} % <br> %\put(1138,1900){\sx{8.2}{\rot{90}$u\!=\!0$\ero}} % <br> % <br> \put(276,1504){\sx{7.8}{\rot{24}$u\!=\!0.1$\ero}} % <br> \put(666,1254){\sx{7}{\rot{31}$u\!=\!0.2$\ero}} % <br> \put(820,1170){\sx{6}{\rot{42}$u\!=\!0.3$\ero}} % <br> \put(920,1150){\sx{5.6}{\rot{42}$u\!=\!0.4$\ero}} % <br> % <br> %\put(1766,1704){\sx{8}{\rot{-38}$u\!=\!-0.1$\ero}} % <br> %\put(1758,1238){\sx{8}{$v\!=\!0$}} % <br> \put(258,1082){\sx{8}{$v\!=\!0$}} % <br> %\put(1708,1082){\sx{8}{\bf cut}} % <br> %\put(1758,0923){\sx{8}{$v\!=\!0$}} % <br> %\put(1850,497){\sx{8}{\rot{40}$u\!=\!-0.1$\ero}} % <br> % <br> \put(626,600){\sx{7}{\rot{68}$v\!=\!-0.1$\ero}} % <br> %\put(1138,200){\sx{8.2}{\rot{85}$u\!=\!0$\ero}} % <br> \end{picture}} % <br> \end{document} % <br>
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 4,576 × 4,542 (1.71 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following page uses this file: