BesselJ1
BesselJ1 or $J_1$ is Bessel function of first order;
- $\!\!\!\! \mathrm{BesselJ1}(z)=J_1(z)= \mathrm{BesselJ}[1,z]$
Function $f=\mathrm{BesselJ1}$ satisfies the Bessel equation [1]
- $ \!\!\!\!
f(z)+f'(z)/z + (z^2\!-\!1)f(z) = 0$
with boundary conditions
- $f(0) = 0~$ and $~f'(0)=1/2$
The complex map of $f=J_1(x+\mathrm i y)$ is shown at right in the $x,y$ plane with levels $u=\Re(f)=\mathrm {const} ~$ and levels $v=\Im(f)=\mathrm {const} ~$.
Relation to other Bessel functions
- $ J_0'(z)=-J_1(z)$
- $\displaystyle 1-J_0(z)=\int_0^z J_1(t)~\mathrm d t $
Expansions
$J_1$ is entire function, the series
- $\displaystyle J_1(z) = \frac{z}{2} \sum_{n=0}^\infty
\frac{(-z^2/4)^n}{(n\!+\!1)~ \mathrm{Factorial}(n)^2}$ converges for any complex $z$ and can be used to plot the complex map at least for $z<10$ withe the complex(double) arithmetics is available. For large values of $|z|$, the asymptotic expansion can be used for the precise evaluation:
- $\displaystyle
J_1(z)= $
- $\displaystyle
\sqrt{\frac{2}{\pi z}} \cos\left(\frac{\pi}{4}+z\right) \left( -1 - \frac{15}{128 z^2} +\frac{4725}{32768 z^4} - \frac{2837835}{4194304 z^6} + \frac{14783093325}{ 2147483648 z^8} - \frac{33424574007825}{274877906944 z^{10}} +O\left(\frac{1}{z^{12}}\right) \right) +$
- $\displaystyle
\sqrt{\frac{2}{\pi z}} \sin\left(\frac{\pi}{4}+z\right) \left( \frac{3}{8 z} - \frac{105}{1024 z^3} + \frac{72765}{262144 z^5} - \frac{66891825}{33554432 z^7} + \frac{468131288625}{17179869184 z^9} - \frac{1327867167401775}{2199023255552 z^{11}} +.. \right) $
This asymptoric expansion is used for the numerical implenentation. However, $z$ should not approach the negative part of the real axis. For the case $\Re(z)<0$, the symmetry
- $J_1(z)= - J_1(-z)$
is used.
Mathematica allows to calculate a dozen of term of this expansion; they can be extracted also from the complex(double) implementation Besselj1.cin.
Evaluation at real argument
At real values of the argument, the GNU library [2] can be used for the evaluation.
The BesselJ1 is related to the BesselJ0 as follows:
- $ J_1(z)=-J_0'(z)$
Keywords
BesselJ0, Bessel function, Special function, Entire function, Cylindric function
References
http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html