Tet2Li3.cin
Revision as of 14:58, 28 July 2020 by T (talk | contribs) (Created page with "// Tet2Li3.cin is the C++ implementation of approximation of tetration to base 2 for moderate values of real part of argument and positive moderated values of the...")
// Tet2Li3.cin is the C++ implementation of approximation of tetration to base 2 for moderate values of real part of argument and positive moderated values of the imaginary part of the argument.
The following header is recommended for a program that uses this routine:
#include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) #include <complex> #define z_type std::complex<double> #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.)
// The text of the routine is copypasted below.
Code of the routine
z_type Tet2Li3(z_type z){ int n; z_type s,c; z_type L4c[101]= {z_type(-0.96442197143292163, 0.05583913456798329) ,z_type(-0.44386570464167646, 1.51106601107493432) ,z_type(-0.52039308389402539, 0.15450254330734406) ,z_type(-0.62355791508386527, 0.17862280636827535) ,z_type(-0.71926217937183412,-0.57516849053290331) ,z_type( 0.05749830306418217,-0.82994217925992275) ,z_type( 0.43105359157262174,-0.49348248684090301) ,z_type( 0.64982487652611143,-0.20197590071626564) ,z_type( 0.63428645257823568, 0.32777473947912916) ,z_type( 0.19066098117240221, 0.59716413625540921) ,z_type(-0.16929224200198975, 0.51191304596747855) ,z_type(-0.43277756099569964, 0.31015093384750825) ,z_type(-0.50803880616233599,-0.06382362922870075) ,z_type(-0.29243448199504934,-0.33099175914462525) ,z_type(-0.04064936446829150,-0.38690390935293639) ,z_type( 0.19555514821283981,-0.31920326250291897) ,z_type( 0.32894214135024552,-0.09828120884621465) ,z_type( 0.26944910286553658, 0.11177913048912366) ,z_type( 0.13954393438926971, 0.21971021918723688) ,z_type(-0.02581292789333949, 0.24438102847859960) ,z_type(-0.15936450902190646, 0.14745186185612344) ,z_type(-0.18185161411949777, 0.01742769092611251) ,z_type(-0.14377642294507287,-0.08134062483323933) ,z_type(-0.05501982590348137,-0.14271190932093702) ,z_type( 0.04315099336263601,-0.12322960204752699) ,z_type( 0.08972837022303276,-0.06328369280246879) ,z_type( 0.10076073895258324, 0.00047998410103517) ,z_type( 0.06898847578276167, 0.05927724361718365) ,z_type( 0.01332972341490650, 0.07398840735627932) ,z_type(-0.02570068625604698, 0.05869216497883219) ,z_type(-0.05172097161127105, 0.02941268881794933) ,z_type(-0.05080229143069231,-0.01037506714434418) ,z_type(-0.02757901334921590,-0.03133987854930548) ,z_type(-0.00546322938165580,-0.03627631473049315) ,z_type( 0.01715705125867679,-0.02946263734365678) ,z_type( 0.02688849312920095,-0.00897449272218340) ,z_type( 0.02173617811106088, 0.00612384503350845) ,z_type( 0.01369861764416750, 0.01561347372318526) ,z_type(-0.00003287868453682, 0.01891860379000663) ,z_type(-0.00962025062651870, 0.01131331623919105) ,z_type(-0.01142748605738148, 0.00393921956696400) ,z_type(-0.01118815977860720,-0.00326985485593909) ,z_type(-0.00502464629123980,-0.00876059458746675) ,z_type( 0.00094985791374801,-0.00740625009361331) ,z_type( 0.00373694125378012,-0.00536076276373415) ,z_type( 0.00622462027483341,-0.00168500536017759) ,z_type( 0.00442989747969840, 0.00258176966491394) ,z_type( 0.00176631559869888, 0.00319518970415377) ,z_type( 0.00007310635245690, 0.00362370309322360) ,z_type(-0.00245512873560677, 0.00245365498295746) ,z_type(-0.00243221602224390, 0.00002011548331446) ,z_type(-0.00169901290818137,-0.00063485732558974) ,z_type(-0.00118336233167492,-0.00167997624232268) ,z_type( 0.00052458682611526,-0.00170092415011180) ,z_type( 0.00086976653179552,-0.00059357465758510) ,z_type( 0.00091036532311980,-0.00038024421570873) ,z_type( 0.00105850512096046, 0.00048113979927880) ,z_type( 0.00012602042659601, 0.00083174033478296) ,z_type(-0.00008622246594299, 0.00040931639700827) ,z_type(-0.00027812449828624, 0.00053242098053083) ,z_type(-0.00063587568461917, 0.00001609634833726) ,z_type(-0.00018253901941825,-0.00029001257366755) ,z_type(-0.00015506695295160,-0.00012828934236503) ,z_type(-0.00002996351748379,-0.00038054789615742) ,z_type( 0.00030231236254942,-0.00012182090022998) ,z_type( 0.00007763375454987, 0.00005743328041207) ,z_type( 0.00015169602237680,-0.00003887561095912) ,z_type( 0.00011353137812138, 0.00020757465003278) ,z_type(-0.00012474003847589, 0.00008616891475390) ,z_type( 0.00001041542798485, 0.00000316351490342) ,z_type(-0.00008801761239733, 0.00009255810050519) ,z_type(-0.00009916071506107,-0.00009795531452574) ,z_type( 0.00005462958189017,-0.00003408399422652) ,z_type(-0.00004733337061949,-0.00000055466895962) ,z_type( 0.00003724277408065,-0.00008661168938259) ,z_type( 0.00006358679057164, 0.00004652159392422) ,z_type(-0.00003443377146479, 0.00000305632800170) ,z_type( 0.00004987251922054,-0.00001172281172453) ,z_type(-0.00001163567858825, 0.00006326592250238) ,z_type(-0.00003603332203559,-0.00002736506629286) ,z_type( 0.00002968990404160, 0.00000786644656885) ,z_type(-0.00003926188226218, 0.00001762032044778) ,z_type( 0.00000282992874630,-0.00004221696016455) ,z_type( 0.00002071301987636, 0.00002080964719940) ,z_type(-0.00002648997970265,-0.00000862292494458) ,z_type( 0.00002768773458769,-0.00001699850316945) ,z_type(-0.00000118908087485, 0.00002800804015221) ,z_type(-0.00001316792012014,-0.00001748225342134) ,z_type( 0.00002229027261526, 0.00000638281027493) ,z_type(-0.00001925760751739, 0.00001402286912933) ,z_type( 0.00000177825673539,-0.00001855855520970) ,z_type( 0.00000924387242742, 0.00001435275174947) ,z_type(-0.00001671687638994,-0.00000479140314426) ,z_type( 0.00001233435793512,-0.00001105497404848) ,z_type(-0.00000151922074091, 0.00001363774455698) ,z_type(-0.00000624952168421,-0.00001038808853014) ,z_type( 0.00001390188179944, 0.00000223388551343) ,z_type(-0.00001256467584753, 0.00000584236963269) ,z_type(-0.00000029067672508,-0.00001118872850170) ,z_type( 0.00000228471905911, 0.00000491389003744) ,z_type(-0.00001047526247999, 0.00000020892389615) }; c=z-3.*I; c/=4.; s=L4c[90]*c; for(n=89;n>0;n--){ s+=L4c[n]; s*=c;} return log(z+2.)/log(2.)+L4c[0]+s;}
Generator
This section is for those, who like to ask: "How did you get it?"
The routine above is generated with the code below. The rough implementation z_type F4(z_type z) of tetration to base 2 should be loaded, ../tet2f4c.cin; it includes two files more, GLxw2048.inc and tet2f2048.inc; they also should be loaded.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) #include <complex> #define z_type std::complex<double> #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "../tet2f4c.cin" //#include "conto.cin" int main(){ int j,k,m,n; DB x,y, f,p,q,r, t; z_type z,c,d,s; //z_type Zo=z_type(.31813150520476413, 1.3372357014306895); int M=300; r=3.2; FILE*o = fopen("Tet2Li3.cin","w"); fprintf(o,"z_type Tet2Li3(z_type z){ int n; z_type s,c; \n"); fprintf(o,"z_type L4c[101]=\n{"); for(k=0;k<101;k++) { s=0; for(m=0;m<M;m++) { f=2*M_PI/M*(m-M/2+.25); z=r*z_type(cos(f),sin(f))+3.*I; c=z_type(cos(-k*f),sin(-k*f)); s+=(F4(z)-log(z+2.)/log(2.))*c; } s/=pow(r/4.,k)*M; printf("%3d %20.17lf %20.17lf\n",k,Re(s),Im(s)); if(k>0) fprintf(o,","); fprintf(o, "z_type(%20.17lf,%20.17lf)\n",Re(s),Im(s)); } fprintf(o,"};\n"); fprintf(o,"c=z-3.*I; c/=4.; s=L4c[90]*c; for(n=89;n>0;n--){ s+=L4c[n]; s*=c;}\n"); fprintf(o,"return log(z+2.)/log(2.)+L4c[0]+s;}\n"); fclose(o); }