Difference between revisions of "BesselJ1"

From TORI
Jump to: navigation, search
 
m (Text replacement - "\$([^\$]+)\$" to "\\(\1\\)")
 
Line 2: Line 2:
 
[[File:BesselY0J0J1plotT060.png|500px|thumb|
 
[[File:BesselY0J0J1plotT060.png|500px|thumb|
 
[[Explicit plot]] of [[BesselY0]] (red), [[BesselJ1]] (green) and [[BesselJ0]] (blue)]]
 
[[Explicit plot]] of [[BesselY0]] (red), [[BesselJ1]] (green) and [[BesselJ0]] (blue)]]
[[File:Besselj1mapT080.png|right|500px|thumb|$ u+\mathrm i v =J_1(x+\mathrm i y)$ ]]
+
[[File:Besselj1mapT080.png|right|500px|thumb|\( u+\mathrm i v =J_1(x+\mathrm i y)\) ]]
'''BesselJ1''' or $J_1$ is [[Bessel function]] of first order;
+
'''BesselJ1''' or \(J_1\) is [[Bessel function]] of first order;
: $\!\!\!\! \mathrm{BesselJ1}(z)=J_1(z)= \mathrm{BesselJ}[1,z]$
+
: \(\!\!\!\! \mathrm{BesselJ1}(z)=J_1(z)= \mathrm{BesselJ}[1,z]\)
   
Function $f=\mathrm{BesselJ1}$ satisfies the [[Bessel equation]]
+
Function \(f=\mathrm{BesselJ1}\) satisfies the [[Bessel equation]]
 
<ref>
 
<ref>
 
http://mathworld.wolfram.com/BesselDifferentialEquation.html
 
http://mathworld.wolfram.com/BesselDifferentialEquation.html
 
</ref>
 
</ref>
   
: $ \!\!\!\!
+
: \( \!\!\!\!
f''(z)+f'(z)/z + (z^2\!-\!1)f(z) = 0$
+
f''(z)+f'(z)/z + (z^2\!-\!1)f(z) = 0\)
   
 
with boundary conditions
 
with boundary conditions
   
: $f(0) = 0~$ and $~f'(0)=1/2$
+
: \(f(0) = 0~\) and \(~f'(0)=1/2\)
   
The [[complex map]] of $f=J_1(x+\mathrm i y)$ is shown at right in the $x,y$ plane with
+
The [[complex map]] of \(f=J_1(x+\mathrm i y)\) is shown at right in the \(x,y\) plane with
levels $u=\Re(f)=\mathrm {const} ~$ and
+
levels \(u=\Re(f)=\mathrm {const} ~\) and
levels $v=\Im(f)=\mathrm {const} ~$.
+
levels \(v=\Im(f)=\mathrm {const} ~\).
 
==Relation to other [[Bessel function]]s==
 
==Relation to other [[Bessel function]]s==
   
: $ J_0'(z)=-J_1(z)$
+
: \( J_0'(z)=-J_1(z)\)
   
: $\displaystyle 1-J_0(z)=\int_0^z J_1(t)~\mathrm d t $
+
: \(\displaystyle 1-J_0(z)=\int_0^z J_1(t)~\mathrm d t \)
 
==Expansions==
 
==Expansions==
   
$J_1$ is [[entire function]], the series
+
\(J_1\) is [[entire function]], the series
   
: $\displaystyle J_1(z) = \frac{z}{2} \sum_{n=0}^\infty
+
: \(\displaystyle J_1(z) = \frac{z}{2} \sum_{n=0}^\infty
\frac{(-z^2/4)^n}{(n\!+\!1)~ \mathrm{Factorial}(n)^2}$
+
\frac{(-z^2/4)^n}{(n\!+\!1)~ \mathrm{Factorial}(n)^2}\)
converges for any complex $z$ and can be used to plot the complex map at least for $z<10$ withe the complex(double) arithmetics is available. For large values of $|z|$, the asymptotic expansion can be used for the precise evaluation:
+
converges for any complex \(z\) and can be used to plot the complex map at least for \(z<10\) withe the complex(double) arithmetics is available. For large values of \(|z|\), the asymptotic expansion can be used for the precise evaluation:
   
: $\displaystyle
+
: \(\displaystyle
J_1(z)= $
+
J_1(z)= \)
: $\displaystyle
+
: \(\displaystyle
 
\sqrt{\frac{2}{\pi z}} \cos\left(\frac{\pi}{4}+z\right) \left(
 
\sqrt{\frac{2}{\pi z}} \cos\left(\frac{\pi}{4}+z\right) \left(
 
-1
 
-1
Line 45: Line 45:
 
- \frac{33424574007825}{274877906944 z^{10}}
 
- \frac{33424574007825}{274877906944 z^{10}}
 
+O\left(\frac{1}{z^{12}}\right) \right)
 
+O\left(\frac{1}{z^{12}}\right) \right)
+$
+
+\)
: $\displaystyle
+
: \(\displaystyle
 
\sqrt{\frac{2}{\pi z}} \sin\left(\frac{\pi}{4}+z\right)
 
\sqrt{\frac{2}{\pi z}} \sin\left(\frac{\pi}{4}+z\right)
 
\left(
 
\left(
Line 57: Line 57:
 
+..
 
+..
 
\right)
 
\right)
  +
\)
$
 
   
This asymptoric expansion is used for the numerical implenentation. However, $z$ should not approach the negative part of the real axis. For the case
+
This asymptoric expansion is used for the numerical implenentation. However, \(z\) should not approach the negative part of the real axis. For the case
$\Re(z)<0$, the symmetry
+
\(\Re(z)<0\), the symmetry
: $J_1(z)= - J_1(-z)$
+
: \(J_1(z)= - J_1(-z)\)
 
is used.
 
is used.
   
Line 74: Line 74:
   
 
The BesselJ1 is related to the [[BesselJ0]] as follows:
 
The BesselJ1 is related to the [[BesselJ0]] as follows:
: $ J_1(z)=-J_0'(z)$
+
: \( J_1(z)=-J_0'(z)\)
   
 
==Keywords==
 
==Keywords==

Latest revision as of 18:26, 30 July 2019

Explicit plot of BesselY0 (red), BesselJ1 (green) and BesselJ0 (blue)
\( u+\mathrm i v =J_1(x+\mathrm i y)\)

BesselJ1 or \(J_1\) is Bessel function of first order;

\(\!\!\!\! \mathrm{BesselJ1}(z)=J_1(z)= \mathrm{BesselJ}[1,z]\)

Function \(f=\mathrm{BesselJ1}\) satisfies the Bessel equation [1]

\( \!\!\!\! f''(z)+f'(z)/z + (z^2\!-\!1)f(z) = 0\)

with boundary conditions

\(f(0) = 0~\) and \(~f'(0)=1/2\)

The complex map of \(f=J_1(x+\mathrm i y)\) is shown at right in the \(x,y\) plane with levels \(u=\Re(f)=\mathrm {const} ~\) and levels \(v=\Im(f)=\mathrm {const} ~\).

Relation to other Bessel functions

\( J_0'(z)=-J_1(z)\)
\(\displaystyle 1-J_0(z)=\int_0^z J_1(t)~\mathrm d t \)

Expansions

\(J_1\) is entire function, the series

\(\displaystyle J_1(z) = \frac{z}{2} \sum_{n=0}^\infty \frac{(-z^2/4)^n}{(n\!+\!1)~ \mathrm{Factorial}(n)^2}\)

converges for any complex \(z\) and can be used to plot the complex map at least for \(z<10\) withe the complex(double) arithmetics is available. For large values of \(|z|\), the asymptotic expansion can be used for the precise evaluation:

\(\displaystyle J_1(z)= \)
\(\displaystyle \sqrt{\frac{2}{\pi z}} \cos\left(\frac{\pi}{4}+z\right) \left( -1 - \frac{15}{128 z^2} +\frac{4725}{32768 z^4} - \frac{2837835}{4194304 z^6} + \frac{14783093325}{ 2147483648 z^8} - \frac{33424574007825}{274877906944 z^{10}} +O\left(\frac{1}{z^{12}}\right) \right) +\)
\(\displaystyle \sqrt{\frac{2}{\pi z}} \sin\left(\frac{\pi}{4}+z\right) \left( \frac{3}{8 z} - \frac{105}{1024 z^3} + \frac{72765}{262144 z^5} - \frac{66891825}{33554432 z^7} + \frac{468131288625}{17179869184 z^9} - \frac{1327867167401775}{2199023255552 z^{11}} +.. \right) \)

This asymptoric expansion is used for the numerical implenentation. However, \(z\) should not approach the negative part of the real axis. For the case \(\Re(z)<0\), the symmetry

\(J_1(z)= - J_1(-z)\)

is used.

Mathematica allows to calculate a dozen of term of this expansion; they can be extracted also from the complex(double) implementation Besselj1.cin.

Evaluation at real argument

At real values of the argument, the GNU library [2] can be used for the evaluation.

The BesselJ1 is related to the BesselJ0 as follows:

\( J_1(z)=-J_0'(z)\)

Keywords

BesselJ0, Bessel function, Special function, Entire function, Cylindric function

References

http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html

http://en.wikipedia.org/wiki/Bessel_function

http://www.mathworks.co.jp/help/techdoc/ref/besselj.html