Talk:StudentDeduction
For mean value zero:
Case of 2 measurements
\[ \mathrm{Nor}(x)=\frac{1}{\sqrt{2\pi}} \exp(-x^2/2) \]
\[ R_2= \int_{-\infty}^{\infty} \mathrm d x_1 \int_{-\infty}^{\infty} \mathrm d x_2 \ \mathrm{Nor}(x_1)\ \mathrm{Nor}(x_2)\ \frac{\big((x_1 + x_2)/2\big)^2 } {(x_1-x_2)^2} \]
Case of 3 measurements
\[ \mathrm{Nor}(x)=\frac{1}{\sqrt{2\pi}} \exp(-x^2/2) \]
\[ M=M(x_1,x_2,x_3))=\frac{x_1+x_2+x_3}{3} \]
\[ s^2=\frac{ (x_1-M)^2+ (x_2-M)^2+ (x_3-M)^2 }{6} \]
\[
R_3=
\int_{-\infty}^{\infty} \mathrm d x_1
\int_{-\infty}^{\infty} \mathrm d x_2
\int_{-\infty}^{\infty} \mathrm d x_3 \
\mathrm{Nor}(x_1)\
\mathrm{Nor}(x_2)\
\mathrm{Nor}(x_3)\
\frac{M^2 }
{s^2}
\]
Case of 4 measurements
\[ \mathrm{Nor}(x)=\frac{1}{\sqrt{2\pi}} \exp(-x^2/2) \]
\[ M=\frac{x_1+x_2+x_3+x_4}{4} \]
\[ s^2=\frac{ (x_1-M)^2+ (x_2-M)^2+ (x_3-M)^2+ (x_4-M)^2 }{12} \]
\[ R_4=
\int_{-\infty}^{\infty} \mathrm d x_1
\int_{-\infty}^{\infty} \mathrm d x_2
\int_{-\infty}^{\infty} \mathrm d x_3
\int_{-\infty}^{\infty} \mathrm d x_4\
\mathrm{Nor}(x_1)\
\mathrm{Nor}(x_2)\
\mathrm{Nor}(x_3)\
\mathrm{Nor}(x_4)\
\frac{M^2}
{s^2}
\]