Difference between revisions of "File:Exm05mapT200.jpg"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | [[ |
+ | [[Complex map]] of the $-0.5$th iteration of [[exponent]], |
$u+\mathrm i v= \exp^{-0.5}(x+\mathrm i y)=\ln^{0.5}(x+\mathrm i y)= |
$u+\mathrm i v= \exp^{-0.5}(x+\mathrm i y)=\ln^{0.5}(x+\mathrm i y)= |
Revision as of 23:51, 27 July 2013
Complex map of the $-0.5$th iteration of exponent,
$u+\mathrm i v= \exp^{-0.5}(x+\mathrm i y)=\ln^{0.5}(x+\mathrm i y)= \mathrm{tet}(-0.5+\mathrm{ate}(x+\mathrm i y)$
For the evaluation, the non-integer iterate of exponential is expressed through tetration tet and arctetration ate. The complex double implementations FSEXP and FSLOG are used in the C++ code below.
C++ generator of curves
// Files ado.cin, conto.cin, fsexp.cin and fslog.cin should be loaded in the working directory in order to compile the code below.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include<complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "conto.cin" #include "fsexp.cin" #include "fslog.cin" main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; int M=401,M1=M+1; int N=403,N1=N+1; DB X[M1],Y[N1]; DB *g, *f, *w; // w is working array. g=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); f=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); w=(DB *)malloc((size_t)((M1*N1)*sizeof(DB))); char v[M1*N1]; // v is working array FILE *o;o=fopen("exm05map.eps","w"); ado(o,802,402); fprintf(o,"401 1 translate\n 100 100 scale\n"); fprintf(o,"1 setlinejoin 2 setlinecap\n"); DO(m,M1) X[m]=-4+.02*(m-.5); DO(n,N1) { y=0.+.01*(n-.5); if(y>Im(Zo)) break; Y[n]=y; } Y[n] =Im(Zo)-.00001; Y[n+1]=Im(Zo)+.00001; for(m=n+2;m<N1;m++) Y[m]=.01*(m-2-.5); for(m=-4;m<5;m++){M(m,0) L(m,4) } for(n=0;n<5;n++){M( -4,n) L(4,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){ g[m*N1+n]=999; f[m*N1+n]=999;} DO(m,M1){x=X[m]; if(m/10*10==m) printf("x=%6.3f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); //if(abs(z+2.)>.019) c=FSEXP(-.5+FSLOG(z)); p=Re(c); q=Im(c);// if(p>-19 && p<19 && ( x<2. || fabs(q)>1.e-12 && fabs(p)>1.e-12) ) { g[m*N1+n]=p;f[m*N1+n]=q;} }} fprintf(o,"1 setlinejoin 1 setlinecap\n"); p=2.;q=1; conto(o,g,w,v,X,Y,M,N, Re(Zo),-p,p);fprintf(o,".03 W 0 1 0 RGB S\n"); conto(o,f,w,v,X,Y,M,N, Im(Zo),-p,p);fprintf(o,".03 W 0 1 0 RGB S\n"); for(m=-8;m<8;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q,q);fprintf(o,".007 W 0 .6 0 RGB S\n"); for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q);fprintf(o,".007 W .9 0 0 RGB S\n"); for(m=0;m<8;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q);fprintf(o,".007 W 0 0 .9 RGB S\n"); for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-q,q);fprintf(o,".02 W .8 0 0 RGB S\n"); for(m= 1;m<17;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-q,q);fprintf(o,".02 W 0 0 .8 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".02 W .5 0 .5 RGB S\n"); for(m=-16;m<17;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-q,q);fprintf(o,".02 W 0 0 0 RGB S\n"); fprintf(o,"0 setlinejoin 0 setlinecap\n");
M(Re(Zo),Im(Zo))L(-4,Im(Zo)) fprintf(o,"1 1 1 RGB .022 W S\n"); DO(n,40){M(Re(Zo)-.2*n,Im(Zo))L(Re(Zo)-.2*(n+.4),Im(Zo)) } fprintf(o,"0 0 0 RGB .032 W S\n");
DO(n,17) {M(-4+.2*n , 0) L(-4+.2*(n+.4),0) } fprintf(o,"0 0 0 RGB .032 W S\n");
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o); free(f); free(g); free(w); system("epstopdf exm05map.eps"); system( "open exm05map.pdf"); //for macintosh getchar(); system("killall Preview"); // For macintosh }
Latex generator of labels
%
\documentclass[12pt]{article}
\end{document}
%
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 12:54, 28 July 2013 | 2,281 × 1,179 (705 KB) | T (talk | contribs) | resolution | |
12:12, 28 July 2013 | 1,711 × 885 (479 KB) | T (talk | contribs) | shift | ||
23:46, 27 July 2013 | 2,281 × 1,179 (704 KB) | T (talk | contribs) | Compex map of the $-0.5$th iteration of exponent, $u+\mathrm i v= \exp^{-0.5}(x+\mathrm i y)=\ln^{0.5}(x+\mathrm i y)= \mathrm{tet}(-0.5+\mathrm{ate}(x+\mathrm i y)$ For the evaluation, the non-integer iterate of exponential is expressed thr... |
You cannot overwrite this file.
File usage
The following page uses this file: